Abstract

A heterodyne interference microscope arrangement for full-field imaging is described. The reference and object beams are formed with highly correlated, time-varying laser speckle patterns. The speckle illumination confers a confocal transfer function to the system, and by temporal averaging, the coherence noise that often degrades coherent full-field microscope images is suppressed. The microscope described is similar to a Linnik-type microscope and allows the use of high-numerical-aperture objective lenses, but the temporal coherence of the illumination permits the use of a low-power achromatic doublet in the reference arm. The use of a doublet simplifies alignment of the microscope and can reduce the cost. Preliminary results are presented that demonstrate full-field surface height precision of 1 nm rms.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tkaczyk and R. Jóźwicki, Opt. Eng. 42, 2391 (2003).
    [CrossRef]
  2. N. A. Massie, M. Dunn, D. Swain, S. Muenter, and J. Morris, Appl. Opt. 22, 2141 (1983).
    [CrossRef]
  3. M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
    [CrossRef]
  4. S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathé, Opt. Lett. 25, 102 (2000).
    [CrossRef]
  5. S. Ando and A. Kimachi, IEEE Trans. Electron. Devices 50, 2059 (2003).
    [CrossRef]
  6. M. C. Pitter, J. Y. L. Goh, M. G. Somekh, B. R. Hayes-Gill, M. Clark, and S. P. Morgan, Electron. Lett. 39, 1339 (2003).
    [CrossRef]
  7. A. L. Migdall, B. Roop, Y. C. Zheng, J. E. Hardis, and G. J. Xia, Appl. Opt. 29, 5136 (1990).
    [CrossRef] [PubMed]
  8. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, Appl. Opt. 41, 805 (2002).
    [CrossRef] [PubMed]
  9. P. Carre, Metrologia 2, 13 (1966).
    [CrossRef]

2003

T. Tkaczyk and R. Jóźwicki, Opt. Eng. 42, 2391 (2003).
[CrossRef]

S. Ando and A. Kimachi, IEEE Trans. Electron. Devices 50, 2059 (2003).
[CrossRef]

M. C. Pitter, J. Y. L. Goh, M. G. Somekh, B. R. Hayes-Gill, M. Clark, and S. P. Morgan, Electron. Lett. 39, 1339 (2003).
[CrossRef]

2002

2000

1990

1983

1966

P. Carre, Metrologia 2, 13 (1966).
[CrossRef]

Ando, S.

S. Ando and A. Kimachi, IEEE Trans. Electron. Devices 50, 2059 (2003).
[CrossRef]

Beaurepaire, E.

Boccara, A.-C.

Bourquin, S.

Carre, P.

P. Carre, Metrologia 2, 13 (1966).
[CrossRef]

Clark, M.

M. C. Pitter, J. Y. L. Goh, M. G. Somekh, B. R. Hayes-Gill, M. Clark, and S. P. Morgan, Electron. Lett. 39, 1339 (2003).
[CrossRef]

Dubois, A.

Dunn, M.

Goh, J.

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Goh, J. Y. L.

M. C. Pitter, J. Y. L. Goh, M. G. Somekh, B. R. Hayes-Gill, M. Clark, and S. P. Morgan, Electron. Lett. 39, 1339 (2003).
[CrossRef]

Hardis, J. E.

Hayes-Gill, B. R.

M. C. Pitter, J. Y. L. Goh, M. G. Somekh, B. R. Hayes-Gill, M. Clark, and S. P. Morgan, Electron. Lett. 39, 1339 (2003).
[CrossRef]

Józwicki, R.

T. Tkaczyk and R. Jóźwicki, Opt. Eng. 42, 2391 (2003).
[CrossRef]

Kimachi, A.

S. Ando and A. Kimachi, IEEE Trans. Electron. Devices 50, 2059 (2003).
[CrossRef]

Massie, N. A.

Migdall, A. L.

Monterosso, V.

Morgan, S. P.

M. C. Pitter, J. Y. L. Goh, M. G. Somekh, B. R. Hayes-Gill, M. Clark, and S. P. Morgan, Electron. Lett. 39, 1339 (2003).
[CrossRef]

Morris, J.

Muenter, S.

Pitter, M. C.

M. C. Pitter, J. Y. L. Goh, M. G. Somekh, B. R. Hayes-Gill, M. Clark, and S. P. Morgan, Electron. Lett. 39, 1339 (2003).
[CrossRef]

Roop, B.

Salathé, R. P.

See, C. W.

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Seitz, P.

Somekh, M. G.

M. C. Pitter, J. Y. L. Goh, M. G. Somekh, B. R. Hayes-Gill, M. Clark, and S. P. Morgan, Electron. Lett. 39, 1339 (2003).
[CrossRef]

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Swain, D.

Tkaczyk, T.

T. Tkaczyk and R. Jóźwicki, Opt. Eng. 42, 2391 (2003).
[CrossRef]

Vabre, L.

Xia, G. J.

Zheng, Y. C.

Appl. Opt.

Electron. Lett.

M. C. Pitter, J. Y. L. Goh, M. G. Somekh, B. R. Hayes-Gill, M. Clark, and S. P. Morgan, Electron. Lett. 39, 1339 (2003).
[CrossRef]

IEEE Trans. Electron. Devices

S. Ando and A. Kimachi, IEEE Trans. Electron. Devices 50, 2059 (2003).
[CrossRef]

Metrologia

P. Carre, Metrologia 2, 13 (1966).
[CrossRef]

Opt. Commun.

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Opt. Eng.

T. Tkaczyk and R. Jóźwicki, Opt. Eng. 42, 2391 (2003).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

An illumination-arm outputs two orthogonally polarized collinear beams, using a half-wave plate (H), polarizing beam splitters (PB1 and PB2), and acousto-optic modulators (AOM1 and AOM2).

Fig. 2
Fig. 2

Incoherent but highly correlated beams scattered by moving diffuser D are collected by condenser C and separated by polarizing beam splitter PB. Images of the diffuse source are formed in the back focal planes of the microscope objective (MO) and reference lens L1. Light from the object arm (MO, quarter-wave plate Q, and sample S) and the reference arm (L1, quarter-wave plate Q, and mirror M) is imaged onto detector array DA by tube lens L2. Polarizer P allows the beams to interfere.

Fig. 3
Fig. 3

(a) Phase map measured at a N.A. of 0.13 from an aluminum-coated glass grating of depth 17 nm and pitch 80 µm. (b) Horizontal and (c) vertical sections through (a).

Fig. 4
Fig. 4

Height map in nanometers measured at a N.A. of 0.7 from a chrome-on-glass resolution target. The vertical slots are 1.375 µm wide.

Metrics