Abstract

A tunable photonic crystal fiber (PCF) coupler, which couples part of the optical power in one PCF with that in another PCF, has been made by side polishing. We fabricated the PCF coupler by mating two side-polished PCFs. We achieved evanescent field coupling between the core modes of the two PCFs by using side polishing to bring the cores close to each other. By adjusting the mating angle between the two side-polished PCFs we obtained as much as 90% tunability in the coupling ratio. The spectrum of the coupling ratio was almost flat, with small ripples, over a 400-nm wavelength range.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
    [CrossRef]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
    [CrossRef]
  4. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. C. Paek, and G. H. Yang, Opt. Lett. 27, 812 (2002).
    [CrossRef]
  5. K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, Opt. Commun. 180, 37 (2000).
    [CrossRef]
  6. M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
    [CrossRef]
  7. J. Kim, H. Kim, U. C. Paek, B. H. Lee, and J. B. Eom, J. Opt. Soc. Korea 7, 79 (2003).
    [CrossRef]
  8. N. A. Mortensen, Opt. Express 10, 341 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  9. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991), Chap. 3.

2003 (1)

2002 (2)

2000 (1)

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, Opt. Commun. 180, 37 (2000).
[CrossRef]

1998 (2)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
[CrossRef]

1997 (1)

1982 (1)

M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Birks, T. A.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

de Sandro, J. P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Eom, J. B.

Jung, W. G.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, Opt. Commun. 180, 37 (2000).
[CrossRef]

Kang, S. W.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, Opt. Commun. 180, 37 (2000).
[CrossRef]

Kim, H.

Kim, J.

Kim, K. T.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, Opt. Commun. 180, 37 (2000).
[CrossRef]

Knight, J. C.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
[CrossRef] [PubMed]

Kwon, H. W.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, Opt. Commun. 180, 37 (2000).
[CrossRef]

Lee, B. H.

Lee, S.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, Opt. Commun. 180, 37 (2000).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991), Chap. 3.

Mogilevtsev, D.

Moon, D. S.

Mortensen, N. A.

Paek, U. C.

Russell, P. St. J.

Shaw, H. J.

M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

Song, J. W.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, Opt. Commun. 180, 37 (2000).
[CrossRef]

Yang, G. H.

Electron. Lett. (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. J. F. Digonnet and H. J. Shaw, IEEE J. Quantum Electron. QE-18, 746 (1982).
[CrossRef]

J. Opt. Soc. Korea (1)

Opt. Commun. (1)

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, Opt. Commun. 180, 37 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (1)

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, New York, 1991), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a half-block in which a side-polished PCF is embedded. A piece of PCF was glued into a groove carved in a silica block and then polished.

Fig. 2
Fig. 2

Schematic top view of the side-polished PCF and microscope images of the polished surface. The dark lines running horizontally in the picture at the right are air holes exposed by polishing.

Fig. 3
Fig. 3

Schematic of the mated half-blocks. The picture at the right is a microscopic image of the cut view of the lower half-block. Cutting could not be done at the exact center of the half-block.

Fig. 4
Fig. 4

Schematic illustrating the adjustment of the mating angle between two half-blocks to produce tunability. The upper half-block (drawn in bold outline) is pushed laterally at a point 15 mm away from the pivot point to change the mating angle.

Fig. 5
Fig. 5

Variation of the coupling ratio measured in terms of lateral displacement (bottom horizontal axis) or equivalently of the mating angle (top horizontal axis). The coupling ratio could be changed by as much as 90% with less than 9µm displacement or 35mdeg variation. Inset, microscope image of the PCF cross section.

Fig. 6
Fig. 6

Normalized spectrum of the coupling ratio measured at a fixed mating condition. Coupled port, coupling into the mated PCF. Through port, uncoupled light in the original PCF.

Metrics