Abstract

The phenomenon of evanescent-wave scattering (EWS) is used to design an optical-fiber humidity sensor. Porous solgel silica (PSGS) coated on the surface of a silica optical-fiber core scatters evanescent waves that penetrate the coating layer. Water molecules in the gas phase surrounding the optical fiber can be absorbed into the inner surface of the pores of the porous silica. The absorbed water molecules form a thin layer of liquid water on the inner surface of the porous silica and enhance the EWS. The amount of water absorbed into the PSGS coating is in dynamic equilibrium with the water-vapor pressure in the gas phase. Therefore the humidity in the air can be quantitatively determined with fiber-optic EWS caused by the PSGS coating. The humidity sensor reported here is fast in response, reversible, and has a wide dynamic range. The possible interference caused by EWS to an optical-fiber gas sensor with a reagent-doped PSGS coating as a transducer is also discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan and B. T. Meggitt, eds., Chemical and Environmental Sensing, Vol. 4 of Optical Fiber Sensor Technology (Kluwer Academic, Dordrecht, The Netherlands, 1999).
  2. A. Messica, A. Greenstein, and A. Katzir, Appl. Opt. 35, 2274 (1996).
    [CrossRef] [PubMed]
  3. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Anal. Chem. 70, 1639 (1998).
    [CrossRef] [PubMed]
  4. D. Bunimovich, E. Belotserkovsky, and A. Katzir, Rev. Sci. Instrum. 66, 2818 (1995).
    [CrossRef]
  5. B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
    [CrossRef]
  6. C. C. Wang, C. I. Li, Y. H. Lin, and L. K. Chau, Appl. Spectrosc. 54, 15 (2000).
    [CrossRef]
  7. R. H. Uibel and J. M. Harris, Appl. Spectrosc. 54, 1868 (2000).
    [CrossRef]
  8. I. S. Krull, R. Mhatre, and H. H. Stuting, TrAC Trends Anal. Chem. 8, 260 (1989).
    [CrossRef]
  9. Y. S. Balin and I. A. Rasenkov, Proc. SPIE 2506, 201 (1995).
    [CrossRef]
  10. J. Gao, K. F. Freed, and S. A. Rice, J. Chem. Phys. 93, 2785 (1990).
  11. B. H. Lin, S. A. Rice, and D. A. Weitz, J. Chem. Phys. 99, 8308 (1993).
  12. R. Jindal, S. Tao, J. P. Singh, and P. S. Gaikwad, Opt. Eng. 41, 1093 (2002).
    [CrossRef]
  13. A. N. Asanov, W. W. Wilson, and P. B. Oldham, Anal. Chem. 70, 1156 (1998).
    [CrossRef] [PubMed]
  14. S. Tao, C. B. Winstead, J. P. Singh, and R. Jindal, Opt. Lett. 27, 1382 (2002).
    [CrossRef]
  15. K. J. Laidler and J. H. Meiser, eds., Physical Chemistry, 2nd ed. (Houghton Mifflin, Boston, 1995).
  16. A. P. Russell and K. S. Fletcher, Anal. Chim. Acta 170, 209 (1985).
    [CrossRef]

2002 (2)

R. Jindal, S. Tao, J. P. Singh, and P. S. Gaikwad, Opt. Eng. 41, 1093 (2002).
[CrossRef]

S. Tao, C. B. Winstead, J. P. Singh, and R. Jindal, Opt. Lett. 27, 1382 (2002).
[CrossRef]

2000 (2)

1998 (2)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Anal. Chem. 70, 1639 (1998).
[CrossRef] [PubMed]

A. N. Asanov, W. W. Wilson, and P. B. Oldham, Anal. Chem. 70, 1156 (1998).
[CrossRef] [PubMed]

1996 (1)

1995 (2)

Y. S. Balin and I. A. Rasenkov, Proc. SPIE 2506, 201 (1995).
[CrossRef]

D. Bunimovich, E. Belotserkovsky, and A. Katzir, Rev. Sci. Instrum. 66, 2818 (1995).
[CrossRef]

1993 (2)

B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
[CrossRef]

B. H. Lin, S. A. Rice, and D. A. Weitz, J. Chem. Phys. 99, 8308 (1993).

1990 (1)

J. Gao, K. F. Freed, and S. A. Rice, J. Chem. Phys. 93, 2785 (1990).

1989 (1)

I. S. Krull, R. Mhatre, and H. H. Stuting, TrAC Trends Anal. Chem. 8, 260 (1989).
[CrossRef]

1985 (1)

A. P. Russell and K. S. Fletcher, Anal. Chim. Acta 170, 209 (1985).
[CrossRef]

Asanov, A. N.

A. N. Asanov, W. W. Wilson, and P. B. Oldham, Anal. Chem. 70, 1156 (1998).
[CrossRef] [PubMed]

Balin, Y. S.

Y. S. Balin and I. A. Rasenkov, Proc. SPIE 2506, 201 (1995).
[CrossRef]

Belotserkovsky, E.

D. Bunimovich, E. Belotserkovsky, and A. Katzir, Rev. Sci. Instrum. 66, 2818 (1995).
[CrossRef]

Bunimovich, D.

D. Bunimovich, E. Belotserkovsky, and A. Katzir, Rev. Sci. Instrum. 66, 2818 (1995).
[CrossRef]

Chau, L. K.

Fletcher, K. S.

A. P. Russell and K. S. Fletcher, Anal. Chim. Acta 170, 209 (1985).
[CrossRef]

Freed, K. F.

J. Gao, K. F. Freed, and S. A. Rice, J. Chem. Phys. 93, 2785 (1990).

Gaikwad, P. S.

R. Jindal, S. Tao, J. P. Singh, and P. S. Gaikwad, Opt. Eng. 41, 1093 (2002).
[CrossRef]

Gao, J.

J. Gao, K. F. Freed, and S. A. Rice, J. Chem. Phys. 93, 2785 (1990).

Greenstein, A.

Harris, J. M.

Hieftje, G. M.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Anal. Chem. 70, 1639 (1998).
[CrossRef] [PubMed]

Hobbs, S. E.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Anal. Chem. 70, 1639 (1998).
[CrossRef] [PubMed]

Jindal, R.

R. Jindal, S. Tao, J. P. Singh, and P. S. Gaikwad, Opt. Eng. 41, 1093 (2002).
[CrossRef]

S. Tao, C. B. Winstead, J. P. Singh, and R. Jindal, Opt. Lett. 27, 1382 (2002).
[CrossRef]

Katzir, A.

A. Messica, A. Greenstein, and A. Katzir, Appl. Opt. 35, 2274 (1996).
[CrossRef] [PubMed]

D. Bunimovich, E. Belotserkovsky, and A. Katzir, Rev. Sci. Instrum. 66, 2818 (1995).
[CrossRef]

Keyes, E. T.

B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
[CrossRef]

Krull, I. S.

I. S. Krull, R. Mhatre, and H. H. Stuting, TrAC Trends Anal. Chem. 8, 260 (1989).
[CrossRef]

Li, C. I.

Lin, B. H.

B. H. Lin, S. A. Rice, and D. A. Weitz, J. Chem. Phys. 99, 8308 (1993).

Lin, Y. H.

MacCraith, B. D.

B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
[CrossRef]

McDonagh, C. M.

B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
[CrossRef]

McGilp, J.

B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
[CrossRef]

Messica, A.

Mhatre, R.

I. S. Krull, R. Mhatre, and H. H. Stuting, TrAC Trends Anal. Chem. 8, 260 (1989).
[CrossRef]

O’Keeffe, G.

B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
[CrossRef]

O’Kelly, B.

B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
[CrossRef]

Oldham, P. B.

A. N. Asanov, W. W. Wilson, and P. B. Oldham, Anal. Chem. 70, 1156 (1998).
[CrossRef] [PubMed]

Potyrailo, R. A.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Anal. Chem. 70, 1639 (1998).
[CrossRef] [PubMed]

Rasenkov, I. A.

Y. S. Balin and I. A. Rasenkov, Proc. SPIE 2506, 201 (1995).
[CrossRef]

Rice, S. A.

B. H. Lin, S. A. Rice, and D. A. Weitz, J. Chem. Phys. 99, 8308 (1993).

J. Gao, K. F. Freed, and S. A. Rice, J. Chem. Phys. 93, 2785 (1990).

Russell, A. P.

A. P. Russell and K. S. Fletcher, Anal. Chim. Acta 170, 209 (1985).
[CrossRef]

Singh, J. P.

R. Jindal, S. Tao, J. P. Singh, and P. S. Gaikwad, Opt. Eng. 41, 1093 (2002).
[CrossRef]

S. Tao, C. B. Winstead, J. P. Singh, and R. Jindal, Opt. Lett. 27, 1382 (2002).
[CrossRef]

Stuting, H. H.

I. S. Krull, R. Mhatre, and H. H. Stuting, TrAC Trends Anal. Chem. 8, 260 (1989).
[CrossRef]

Tao, S.

R. Jindal, S. Tao, J. P. Singh, and P. S. Gaikwad, Opt. Eng. 41, 1093 (2002).
[CrossRef]

S. Tao, C. B. Winstead, J. P. Singh, and R. Jindal, Opt. Lett. 27, 1382 (2002).
[CrossRef]

Uibel, R. H.

Vos, J. G.

B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
[CrossRef]

Wang, C. C.

Weitz, D. A.

B. H. Lin, S. A. Rice, and D. A. Weitz, J. Chem. Phys. 99, 8308 (1993).

Wilson, W. W.

A. N. Asanov, W. W. Wilson, and P. B. Oldham, Anal. Chem. 70, 1156 (1998).
[CrossRef] [PubMed]

Winstead, C. B.

Anal. Chem. (2)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Anal. Chem. 70, 1639 (1998).
[CrossRef] [PubMed]

A. N. Asanov, W. W. Wilson, and P. B. Oldham, Anal. Chem. 70, 1156 (1998).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

A. P. Russell and K. S. Fletcher, Anal. Chim. Acta 170, 209 (1985).
[CrossRef]

Analyst (1)

B. D. MacCraith, C. M. McDonagh, G. O’Keeffe, E. T. Keyes, J. G. Vos, B. O’Kelly, and J. McGilp, Analyst 118, 385 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (2)

J. Chem. Phys. (2)

J. Gao, K. F. Freed, and S. A. Rice, J. Chem. Phys. 93, 2785 (1990).

B. H. Lin, S. A. Rice, and D. A. Weitz, J. Chem. Phys. 99, 8308 (1993).

Opt. Eng. (1)

R. Jindal, S. Tao, J. P. Singh, and P. S. Gaikwad, Opt. Eng. 41, 1093 (2002).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

Y. S. Balin and I. A. Rasenkov, Proc. SPIE 2506, 201 (1995).
[CrossRef]

Rev. Sci. Instrum. (1)

D. Bunimovich, E. Belotserkovsky, and A. Katzir, Rev. Sci. Instrum. 66, 2818 (1995).
[CrossRef]

TrAC Trends Anal. Chem. (1)

I. S. Krull, R. Mhatre, and H. H. Stuting, TrAC Trends Anal. Chem. 8, 260 (1989).
[CrossRef]

Other (2)

K. T. V. Grattan and B. T. Meggitt, eds., Chemical and Environmental Sensing, Vol. 4 of Optical Fiber Sensor Technology (Kluwer Academic, Dordrecht, The Netherlands, 1999).

K. J. Laidler and J. H. Meiser, eds., Physical Chemistry, 2nd ed. (Houghton Mifflin, Boston, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Intensity spectrum of light guided through a PSGS-coated bent optical fiber probe exposed to air of different humidity.

Fig. 2
Fig. 2

Wavelength response of EWS-originated light attenuation by a PSGS-coated bent fiber probe exposed to air of different humidity. The small waves at around 430, 540, and 610 nm are caused by light from a mercury fluorescence illuminating lamp in the laboratory. The light from the mercury lamp was coupled into the optical fiber probe through scattering by the PSGS coating.

Fig. 3
Fig. 3

Calibration curve for quantitative determination of humidity with a PSGS-coated bent fiber probe. dB is defined as dB=10*logIRH=3%/IRH.

Fig. 4
Fig. 4

Time response of a prototype humidity sensor for monitoring humidity change. Prototype sensor output dB in this graph is defined as dB=10*logIRH=5%/IRH. The spike of prototype sensor response at 153 min is caused by a fast change in the dry air flow rate. The inset shows that the prototype sensor has an almost instant response to the fast humidity change, whereas the commercial humidity sensor cannot sensor the fast change.

Metrics