Abstract

A compact and monolithic four-channel demultiplexer with 20-nm spacing was fabricated by use of a high-spatial-frequency transmission grating buried in a silica waveguide. The grating was successfully buried in a silica slab waveguide by overcladding by plasma-enhanced chemical-vapor deposition. The device’s size was approximately 5.1 mm×9.2 mm. The average insertion loss was 13 dB. The average cross talk was -15 dB for adjacent channels and -19 dB for nonadjacent channels. The polarization-dependent loss was estimated to be as low as 0.7 dB.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. R. Eichenbaum and S. K. Das, in Technical Proceedings of National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, N.J., 2001), pp. 1444–1448.
  2. Y. Hida and Y. Hibino, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 399–401.
  3. C. N. Morgan, S. Yu, and R. V. Penty, IEEE Photon. Technol. Lett. 14, 1303 (2002).
    [CrossRef]
  4. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
  5. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, Opt. Lett. 22, 142 (1997).
    [CrossRef] [PubMed]
  6. T. Glaser, S. Schröter, R. Pohlmann, H. J. Fuchs, and H. Bartelt, J. Mod. Opt. 45, 1487 (1998).
    [CrossRef]

2002 (1)

C. N. Morgan, S. Yu, and R. V. Penty, IEEE Photon. Technol. Lett. 14, 1303 (2002).
[CrossRef]

1998 (1)

T. Glaser, S. Schröter, R. Pohlmann, H. J. Fuchs, and H. Bartelt, J. Mod. Opt. 45, 1487 (1998).
[CrossRef]

1997 (1)

1982 (1)

Bartelt, H.

T. Glaser, S. Schröter, R. Pohlmann, H. J. Fuchs, and H. Bartelt, J. Mod. Opt. 45, 1487 (1998).
[CrossRef]

Boyd, R. D.

Britten, J. A.

Bryan, S. J.

Das, S. K.

B. R. Eichenbaum and S. K. Das, in Technical Proceedings of National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, N.J., 2001), pp. 1444–1448.

Eichenbaum, B. R.

B. R. Eichenbaum and S. K. Das, in Technical Proceedings of National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, N.J., 2001), pp. 1444–1448.

Fuchs, H. J.

T. Glaser, S. Schröter, R. Pohlmann, H. J. Fuchs, and H. Bartelt, J. Mod. Opt. 45, 1487 (1998).
[CrossRef]

Gaylord, T. K.

Glaser, T.

T. Glaser, S. Schröter, R. Pohlmann, H. J. Fuchs, and H. Bartelt, J. Mod. Opt. 45, 1487 (1998).
[CrossRef]

Hibino, Y.

Y. Hida and Y. Hibino, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 399–401.

Hida, Y.

Y. Hida and Y. Hibino, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 399–401.

Moharam, M. G.

Morgan, C. N.

C. N. Morgan, S. Yu, and R. V. Penty, IEEE Photon. Technol. Lett. 14, 1303 (2002).
[CrossRef]

Nguyen, H. T.

Penty, R. V.

C. N. Morgan, S. Yu, and R. V. Penty, IEEE Photon. Technol. Lett. 14, 1303 (2002).
[CrossRef]

Perry, M. D.

Pohlmann, R.

T. Glaser, S. Schröter, R. Pohlmann, H. J. Fuchs, and H. Bartelt, J. Mod. Opt. 45, 1487 (1998).
[CrossRef]

Schröter, S.

T. Glaser, S. Schröter, R. Pohlmann, H. J. Fuchs, and H. Bartelt, J. Mod. Opt. 45, 1487 (1998).
[CrossRef]

Shore, B. W.

Yu, S.

C. N. Morgan, S. Yu, and R. V. Penty, IEEE Photon. Technol. Lett. 14, 1303 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. N. Morgan, S. Yu, and R. V. Penty, IEEE Photon. Technol. Lett. 14, 1303 (2002).
[CrossRef]

J. Mod. Opt. (1)

T. Glaser, S. Schröter, R. Pohlmann, H. J. Fuchs, and H. Bartelt, J. Mod. Opt. 45, 1487 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Other (2)

B. R. Eichenbaum and S. K. Das, in Technical Proceedings of National Fiber Optic Engineers Conference (Telcordia Technologies, Piscataway, N.J., 2001), pp. 1444–1448.

Y. Hida and Y. Hibino, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 399–401.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of the proposed demultiplexer.

Fig. 2
Fig. 2

Left, calculated first-order diffraction efficiencies of the high-spatial-frequency transmission grating for TE- and TM-polarized light near 1550 nm and right, schematic of light propagation and grating dimensions. The grating period and thickness are 1.5 and 3.4 µm, respectively.

Fig. 3
Fig. 3

SEM image of the top view of the high-spatial-frequency transmission grating etched by ICP-RIE. Inset, cross section of the grating. Grating period, 1.5 µm; groove width, 0.60 µm; groove depth, 4.9 µm.

Fig. 4
Fig. 4

Cross-sectional SEM image of the grating buried in a silica waveguide by plasma-enhanced chemical-vapor deposition.

Fig. 5
Fig. 5

Transmission spectrum of the 20-nm spaced four-channel demultiplexer.

Metrics