Abstract

Experimental results and a discussion on the formation and decay of oxygen-modulated chemical-composition gratings in a standard telecommunication fiber are presented. Comparison between the decay experiment and the model provides a diffusion coefficient with an activation energy of 490 kJ/mol, which is in close agreement with reported values of oxygen self-diffusion in silica. The gratings have a diffusion-controlled decay behavior, with more than 50% of the reflectivity remaining after 7.5 h at a temperature of 1230 °C. The gratings show higher thermal stability when heated in air than in an inert argon atmosphere.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fokine, J. Opt. Soc. Am. B 19, 1759 (2002).
    [CrossRef]
  2. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  3. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 1, 73 (1994).
    [CrossRef]
  4. G. Heiberg, J. Skaar, M. Fokine, and L. Arnberg, in AFS Transactions, Vol. 110 (2002), paper 02-117.
  5. M. Fokine, Opt. Lett. 27, 1016 (2002).
    [CrossRef]
  6. R. H. Doremus, in Reactivity of Solids, J. W. Mitchell, R. C. DeVries, R. W. Roberts, and P. Cannon, eds. (Wiley, New York, 1969), pp. 667–673.
  7. I. Petermann, B. Sahlgren, S. Helmfrid, A. T. Friberg, and P.-Y. Fonjallaz, Appl. Opt. 41, 1051 (2002).
    [CrossRef] [PubMed]
  8. M. Fokine, Rev. Sci. Instrum. 72, 3458 (2001).
    [CrossRef]
  9. M. Fokine, Opt. Lett. 27, 1974 (2002).
    [CrossRef]
  10. J. C. Mikkelsen, Appl. Phys. Lett. 45, 1187 (1984).
    [CrossRef]
  11. M. K. Schurman and M. Tomozawa, J. Non-Cryst. Solids 202, 93 (1996).
    [CrossRef]

2002

2001

M. Fokine, Rev. Sci. Instrum. 72, 3458 (2001).
[CrossRef]

1996

M. K. Schurman and M. Tomozawa, J. Non-Cryst. Solids 202, 93 (1996).
[CrossRef]

1994

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 1, 73 (1994).
[CrossRef]

1984

J. C. Mikkelsen, Appl. Phys. Lett. 45, 1187 (1984).
[CrossRef]

Arnberg, L.

G. Heiberg, J. Skaar, M. Fokine, and L. Arnberg, in AFS Transactions, Vol. 110 (2002), paper 02-117.

Doremus, R. H.

R. H. Doremus, in Reactivity of Solids, J. W. Mitchell, R. C. DeVries, R. W. Roberts, and P. Cannon, eds. (Wiley, New York, 1969), pp. 667–673.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 1, 73 (1994).
[CrossRef]

Fokine, M.

M. Fokine, J. Opt. Soc. Am. B 19, 1759 (2002).
[CrossRef]

M. Fokine, Opt. Lett. 27, 1016 (2002).
[CrossRef]

M. Fokine, Opt. Lett. 27, 1974 (2002).
[CrossRef]

M. Fokine, Rev. Sci. Instrum. 72, 3458 (2001).
[CrossRef]

G. Heiberg, J. Skaar, M. Fokine, and L. Arnberg, in AFS Transactions, Vol. 110 (2002), paper 02-117.

Fonjallaz, P.-Y.

Friberg, A. T.

Heiberg, G.

G. Heiberg, J. Skaar, M. Fokine, and L. Arnberg, in AFS Transactions, Vol. 110 (2002), paper 02-117.

Helmfrid, S.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 1, 73 (1994).
[CrossRef]

Mikkelsen, J. C.

J. C. Mikkelsen, Appl. Phys. Lett. 45, 1187 (1984).
[CrossRef]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 1, 73 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 1, 73 (1994).
[CrossRef]

Petermann, I.

Sahlgren, B.

Schurman, M. K.

M. K. Schurman and M. Tomozawa, J. Non-Cryst. Solids 202, 93 (1996).
[CrossRef]

Skaar, J.

G. Heiberg, J. Skaar, M. Fokine, and L. Arnberg, in AFS Transactions, Vol. 110 (2002), paper 02-117.

Tomozawa, M.

M. K. Schurman and M. Tomozawa, J. Non-Cryst. Solids 202, 93 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. C. Mikkelsen, Appl. Phys. Lett. 45, 1187 (1984).
[CrossRef]

J. Appl. Phys.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, J. Appl. Phys. 1, 73 (1994).
[CrossRef]

J. Non-Cryst. Solids

M. K. Schurman and M. Tomozawa, J. Non-Cryst. Solids 202, 93 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Rev. Sci. Instrum.

M. Fokine, Rev. Sci. Instrum. 72, 3458 (2001).
[CrossRef]

Other

R. H. Doremus, in Reactivity of Solids, J. W. Mitchell, R. C. DeVries, R. W. Roberts, and P. Cannon, eds. (Wiley, New York, 1969), pp. 667–673.

R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).

G. Heiberg, J. Skaar, M. Fokine, and L. Arnberg, in AFS Transactions, Vol. 110 (2002), paper 02-117.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Grating reflection dynamics during CCG manufacturing in standard telecommunications fiber.

Fig. 2
Fig. 2

Arrhenius plots for diffusion coefficients showing symbols for the experimental results and a solid line for reported values. The dashed line represents the extrapolated values. Experiments were performed in air atmosphere.

Fig. 3
Fig. 3

Decay of an O-CCG in standard telecommunication fiber at 1230 °C in air and argon atmospheres.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2SiOHSiOSi+H2O.

Metrics