Abstract

We experimentally demonstrate operation of a laterally deformable optical nanoelectromechanical system grating transducer. The device is fabricated in amorphous diamond with standard lithographic techniques. For small changes in the spacing of the subwavelength grating elements, lossy propagating resonant modes in the plane of the grating cause a large change in the optical reflection amplitude. An in-plane motion detection sensitivity of 160 fm/Hz was measured, exceeding that of any other optical microelectromechanical system transducer to our knowledge. Calculations predict that this sensitivity could be improved to better than 40 fm/Hz in future designs. In addition to having applications in the field of inertial sensors, this device could also be used as an optical modulator.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
    [CrossRef]
  2. R. B. Apte, F. S. A. Sandejas, W. C. Banyai, and D. M. Bloom, in Technical Digest of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), p. 1.
  3. O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, Opt. Lett. 17, 688 (1992).
    [CrossRef] [PubMed]
  4. D. W. Carr, J. P. Sullivan, and T. A. Friedmann, Opt. Lett. 28, 1636 (2003).
    [CrossRef] [PubMed]
  5. J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).
  6. J. P. Sullivan, T. A. Friedmann, and K. Hjort, MRS Bull. 26, 309 (2001).
    [CrossRef]
  7. A. A. Shabana, Vibration of Discrete and Continuous Systems (Springer, New York, 1997).
  8. C. H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
    [CrossRef]

2003 (1)

2002 (1)

R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
[CrossRef]

2001 (3)

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

J. P. Sullivan, T. A. Friedmann, and K. Hjort, MRS Bull. 26, 309 (2001).
[CrossRef]

C. H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
[CrossRef]

1992 (1)

Aklufi, M. E.

R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
[CrossRef]

Apte, R. B.

R. B. Apte, F. S. A. Sandejas, W. C. Banyai, and D. M. Bloom, in Technical Digest of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), p. 1.

Ashby, C. I. H.

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

Banyai, W. C.

R. B. Apte, F. S. A. Sandejas, W. C. Banyai, and D. M. Bloom, in Technical Digest of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), p. 1.

Bloom, D. M.

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, Opt. Lett. 17, 688 (1992).
[CrossRef] [PubMed]

R. B. Apte, F. S. A. Sandejas, W. C. Banyai, and D. M. Bloom, in Technical Digest of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), p. 1.

Carr, D. W.

de Boer, M. P.

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

Dugger, M. T.

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

Dunn, R. G.

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

Friedmann, T. A.

D. W. Carr, J. P. Sullivan, and T. A. Friedmann, Opt. Lett. 28, 1636 (2003).
[CrossRef] [PubMed]

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

J. P. Sullivan, T. A. Friedmann, and K. Hjort, MRS Bull. 26, 309 (2001).
[CrossRef]

Hjort, K.

J. P. Sullivan, T. A. Friedmann, and K. Hjort, MRS Bull. 26, 309 (2001).
[CrossRef]

Hohlfelder, R. J.

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

Kenny, T. W.

C. H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
[CrossRef]

LaVan, D. A.

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

Liu, C. H.

C. H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
[CrossRef]

Magerkurth, A. J.

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

Mitchell, M.

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

Sandejas, F. S. A.

O. Solgaard, F. S. A. Sandejas, and D. M. Bloom, Opt. Lett. 17, 688 (1992).
[CrossRef] [PubMed]

R. B. Apte, F. S. A. Sandejas, W. C. Banyai, and D. M. Bloom, in Technical Digest of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), p. 1.

Shabana, A. A.

A. A. Shabana, Vibration of Discrete and Continuous Systems (Springer, New York, 1997).

Solgaard, O.

Sullivan, J. P.

D. W. Carr, J. P. Sullivan, and T. A. Friedmann, Opt. Lett. 28, 1636 (2003).
[CrossRef] [PubMed]

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

J. P. Sullivan, T. A. Friedmann, and K. Hjort, MRS Bull. 26, 309 (2001).
[CrossRef]

Waters, R. L.

R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

R. L. Waters and M. E. Aklufi, Appl. Phys. Lett. 81, 3320 (2002).
[CrossRef]

J. Microelectromech. Syst. (1)

C. H. Liu and T. W. Kenny, J. Microelectromech. Syst. 10, 425 (2001).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

J. P. Sullivan, T. A. Friedmann, M. P. de Boer, D. A. LaVan, R. J. Hohlfelder, C. I. H. Ashby, M. T. Dugger, M. Mitchell, R. G. Dunn, and A. J. Magerkurth, Mater. Res. Soc. Symp. Proc. 657, EE711 (2001).

MRS Bull. (1)

J. P. Sullivan, T. A. Friedmann, and K. Hjort, MRS Bull. 26, 309 (2001).
[CrossRef]

Opt. Lett. (2)

Other (2)

R. B. Apte, F. S. A. Sandejas, W. C. Banyai, and D. M. Bloom, in Technical Digest of the Solid-State Sensor and Actuator Workshop (Transducer Research Foundation, Cleveland, Ohio, 1994), p. 1.

A. A. Shabana, Vibration of Discrete and Continuous Systems (Springer, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross section of the laterally deformable grating. The thicknesses of the grating, air gap, and antireflection coating regions are d1, d2, and d3, respectively. The width of an individual grating element is w, the length is L, and the center-to-center nearest-neighbor spacing is s. The grating period is Λ. Light is incident normal to the plane of the grating.

Fig. 2
Fig. 2

Scanning electron micrograph of a typical grating structure measured in this work. The beam width, w, of this grating is 50 mm and the vertical thickness, d1, is 400 nm.

Fig. 3
Fig. 3

Plot of the resonance frequency shift as a function of applied dc voltage for one device. The squares are measured data, and the curve is the theoretical fit using an electrostatic model.

Fig. 4
Fig. 4

Reflected optical amplitude at 100 Hz as a function of applied ac voltage for the same device measured in Fig. 3. The squares are the measured data. The solid line, corresponding to the right-hand axis, is indicative of the equivalent amplitude of motion based on electrostatic calculations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω0=Ew212ρ1.875L2,
ωr=ω02-ε0Ameffd03Vdc2=ω02-αVdc2,
x=ε0A2meffω02d02V2.
xω=αd0ω02VdcVac sinωt,

Metrics