Abstract

We report an experimental demonstration of an ultracompact biochemical sensor based on a two-dimensional photonic crystal microcavity. The microcavity, fabricated on a silicon-on-insulator substrate, is designed to have a resonant wavelength (λ) near 1.5 µm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.0 to n=1.5. From observation of the shift in resonant wavelength, a change in ambient refractive index of Δn=0.002 is readily apparent. The correspondence between absolute refractive index and resonant wavelength agrees with numerical calculation to within 4% accuracy. The evaporation of water in a 5% glycerol mixture is also used to demonstrate the capability for in situ time-resolved sensing.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. R. Rogers, Mol. Biotechnol. 14, 109 (2000).
    [CrossRef] [PubMed]
  2. B. Liedberg, I. Lundstrom, and E. Stenberg, Sens. Actuators B 11, 63 (1993).
    [CrossRef]
  3. B. T. Cunningham, P. Li, B. Lin, and J. Pepper, Sens. Actuators B 81, 316 (2002).
    [CrossRef]
  4. V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, Science 278, 840 (1997).
    [CrossRef] [PubMed]
  5. F. Morhard, J. Pipper, R. Dahint, and M. Grunze, Sens. Actuators B 70, 232 (2000).
    [CrossRef]
  6. J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, Appl. Phys. Lett. 82, 1143 (2003).
    [CrossRef]
  7. M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
    [CrossRef]
  8. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  9. S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and H. M. Ho, Phys. Rev. B 59, 15579 (1999).
    [CrossRef]
  10. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
    [CrossRef]
  11. G. Subramania, S. Y. Lin, J. R. Wendt, and J. M. Rivera, Appl. Phys. Lett. 83, 4491 (2003).
    [CrossRef]
  12. O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Am. B 16, 275 (1999).
    [CrossRef]
  13. Different sensors with the same nominal design, however, have slightly different resonant wavelengths (Δλ∼±3 nm) because of fabrication variation.
  14. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  15. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (1999).
    [CrossRef]
  16. The resonant wavelength shift is measured to be less than 0.05 nm in an air-filled sensor after heating with the same 10-W tungsten light bulb, indicating that the change of sensor temperature in our experiment is small and has a negligible effect on the resonant wavelength.
  17. The droplet size of the glycerol–water mixture is several orders of magnitude larger than the holes in the photonic crystal, with a typical thickness of a few hundred micrometers and a coverage area of 5 mm2. Therefore the holes should still be fully filled even after the evaporation of water, except with a higher concentration of glycerol.
  18. R. C. Weast, M. J. Astle, and W. H. Beyer, eds., Handbook of Chemistry and Physics, 68th ed. (CRC Press, Boca Raton, Fla., 1987), p. D-232.
  19. Glycerol is highly hygroscopic, which limits the final water content to 15%.

2003 (3)

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

G. Subramania, S. Y. Lin, J. R. Wendt, and J. M. Rivera, Appl. Phys. Lett. 83, 4491 (2003).
[CrossRef]

2002 (2)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, Sens. Actuators B 81, 316 (2002).
[CrossRef]

2001 (1)

2000 (2)

K. R. Rogers, Mol. Biotechnol. 14, 109 (2000).
[CrossRef] [PubMed]

F. Morhard, J. Pipper, R. Dahint, and M. Grunze, Sens. Actuators B 70, 232 (2000).
[CrossRef]

1999 (3)

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and H. M. Ho, Phys. Rev. B 59, 15579 (1999).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Am. B 16, 275 (1999).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (1999).
[CrossRef]

1997 (1)

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, Science 278, 840 (1997).
[CrossRef] [PubMed]

1993 (1)

B. Liedberg, I. Lundstrom, and E. Stenberg, Sens. Actuators B 11, 63 (1993).
[CrossRef]

Bhattacharya, P.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and H. M. Ho, Phys. Rev. B 59, 15579 (1999).
[CrossRef]

Cunningham, B. T.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, Sens. Actuators B 81, 316 (2002).
[CrossRef]

Dahint, R.

F. Morhard, J. Pipper, R. Dahint, and M. Grunze, Sens. Actuators B 70, 232 (2000).
[CrossRef]

Dancil, K.-P. S.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, Science 278, 840 (1997).
[CrossRef] [PubMed]

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (1999).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and H. M. Ho, Phys. Rev. B 59, 15579 (1999).
[CrossRef]

Ghadir, M. R.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, Science 278, 840 (1997).
[CrossRef] [PubMed]

Grunze, M.

F. Morhard, J. Pipper, R. Dahint, and M. Grunze, Sens. Actuators B 70, 232 (2000).
[CrossRef]

Ho, H. M.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and H. M. Ho, Phys. Rev. B 59, 15579 (1999).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (1999).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (1999).
[CrossRef]

Li, P.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, Sens. Actuators B 81, 316 (2002).
[CrossRef]

Liedberg, B.

B. Liedberg, I. Lundstrom, and E. Stenberg, Sens. Actuators B 11, 63 (1993).
[CrossRef]

Lin, B.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, Sens. Actuators B 81, 316 (2002).
[CrossRef]

Lin, S. Y.

G. Subramania, S. Y. Lin, J. R. Wendt, and J. M. Rivera, Appl. Phys. Lett. 83, 4491 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and H. M. Ho, Phys. Rev. B 59, 15579 (1999).
[CrossRef]

Lin, V. S.-Y.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, Science 278, 840 (1997).
[CrossRef] [PubMed]

Loncar, M.

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

Lundstrom, I.

B. Liedberg, I. Lundstrom, and E. Stenberg, Sens. Actuators B 11, 63 (1993).
[CrossRef]

Mabuchi, H.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Morhard, F.

F. Morhard, J. Pipper, R. Dahint, and M. Grunze, Sens. Actuators B 70, 232 (2000).
[CrossRef]

Motesharei, K.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, Science 278, 840 (1997).
[CrossRef] [PubMed]

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, Science 278, 840 (1997).
[CrossRef] [PubMed]

Painter, O.

O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Am. B 16, 275 (1999).
[CrossRef]

Pepper, J.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, Sens. Actuators B 81, 316 (2002).
[CrossRef]

Pipper, J.

F. Morhard, J. Pipper, R. Dahint, and M. Grunze, Sens. Actuators B 70, 232 (2000).
[CrossRef]

Qiu, Y.

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

Rivera, J. M.

G. Subramania, S. Y. Lin, J. R. Wendt, and J. M. Rivera, Appl. Phys. Lett. 83, 4491 (2003).
[CrossRef]

Rogers, K. R.

K. R. Rogers, Mol. Biotechnol. 14, 109 (2000).
[CrossRef] [PubMed]

Sabarinathan, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

Sailor, M. J.

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, Science 278, 840 (1997).
[CrossRef] [PubMed]

Scherer, A.

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Am. B 16, 275 (1999).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and H. M. Ho, Phys. Rev. B 59, 15579 (1999).
[CrossRef]

Stenberg, E.

B. Liedberg, I. Lundstrom, and E. Stenberg, Sens. Actuators B 11, 63 (1993).
[CrossRef]

Subramania, G.

G. Subramania, S. Y. Lin, J. R. Wendt, and J. M. Rivera, Appl. Phys. Lett. 83, 4491 (2003).
[CrossRef]

Topolancik, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (1999).
[CrossRef]

Vuckovic, J.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Am. B 16, 275 (1999).
[CrossRef]

Wendt, J. R.

G. Subramania, S. Y. Lin, J. R. Wendt, and J. M. Rivera, Appl. Phys. Lett. 83, 4491 (2003).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Yu, P. C.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, Appl. Phys. Lett. 82, 1143 (2003).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, Appl. Phys. Lett. 82, 4648 (2003).
[CrossRef]

G. Subramania, S. Y. Lin, J. R. Wendt, and J. M. Rivera, Appl. Phys. Lett. 83, 4491 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J. Quantum Electron. 38, 850 (2002).
[CrossRef]

J. Opt. Am. B (1)

O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Am. B 16, 275 (1999).
[CrossRef]

Mol. Biotechnol. (1)

K. R. Rogers, Mol. Biotechnol. 14, 109 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (1999).
[CrossRef]

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and H. M. Ho, Phys. Rev. B 59, 15579 (1999).
[CrossRef]

Science (1)

V. S.-Y. Lin, K. Motesharei, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadir, Science 278, 840 (1997).
[CrossRef] [PubMed]

Sens. Actuators B (3)

F. Morhard, J. Pipper, R. Dahint, and M. Grunze, Sens. Actuators B 70, 232 (2000).
[CrossRef]

B. Liedberg, I. Lundstrom, and E. Stenberg, Sens. Actuators B 11, 63 (1993).
[CrossRef]

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, Sens. Actuators B 81, 316 (2002).
[CrossRef]

Other (6)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

The resonant wavelength shift is measured to be less than 0.05 nm in an air-filled sensor after heating with the same 10-W tungsten light bulb, indicating that the change of sensor temperature in our experiment is small and has a negligible effect on the resonant wavelength.

The droplet size of the glycerol–water mixture is several orders of magnitude larger than the holes in the photonic crystal, with a typical thickness of a few hundred micrometers and a coverage area of 5 mm2. Therefore the holes should still be fully filled even after the evaporation of water, except with a higher concentration of glycerol.

R. C. Weast, M. J. Astle, and W. H. Beyer, eds., Handbook of Chemistry and Physics, 68th ed. (CRC Press, Boca Raton, Fla., 1987), p. D-232.

Glycerol is highly hygroscopic, which limits the final water content to 15%.

Different sensors with the same nominal design, however, have slightly different resonant wavelengths (Δλ∼±3 nm) because of fabrication variation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscope view of a photonic crystal microcavity integrated with two ridge waveguides. The regular hole diameter is d=0.58 a, the defect hole diameter is d=0.4 a, and a=440 nm is the lattice constant of the photonic crystal.

Fig. 2
Fig. 2

Normalized transmission spectra of the photonic crystal microcavity with five different ambient refractive indices ranging from n=1.446 to n=1.454 in 0.002 increments.

Fig. 3
Fig. 3

Resonant wavelength shift Δλ plotted as a function of ambient index n. The inset shows the fluctuation in the resonant wavelength measured at n=1.450 over a time interval of 30 min.

Fig. 4
Fig. 4

Resonant wavelength and the corresponding refractive index as a function of time during the evaporative process of water in a glycerol–water mixture.

Metrics