Abstract

Backward light scattering can cause passive Q switching in fiber lasers. We propose a self-consistent description of the laser dynamics. Our model quantitatively reproduces the temporal structure of pulsation and is also attractive for analysis of laser stability and statistics. The validity of the model is directly verified in an experiment.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, Opt. Lett. 22, 298 (1997).
    [CrossRef] [PubMed]
  2. S. V. Chernikov and A. A. Fotiadi, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 477–478.
  3. A. A. Fotiadi, A. Ikiades, O. Deparis, R. Kiyan, and S. Chernikov, Proc. SPIE 4354, 125 (2001).
    [CrossRef]
  4. D. A. Grukh, A. S. Kurkov, I. M. Razdobreev, and A. A. Fotiadi, Quantum Electron. 32, 1017 (2002).
    [CrossRef]
  5. A. A. Fotiadi, P. Mégret, and M. Blondel, in Proceedings of the 2002 Symposium of the IEEE/LEOS Benelux Chapter, T. D. Visser, D. Lenstra, and H. F. Schouten, eds. (Vrije Universiteit, Amsterdam, The Netherlands, 2002), pp. 147–150.
  6. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, Opt. Lett. 23, 454 (1998).
    [CrossRef]
  7. Y.-X. Fan, F.-Y. Lu, S.-L. Hu, K.-C. Lu, H.-J. Wang, G.-Y. Zhang, and X.-Y. Dong, Opt. Lett. 28, 537 (2003).
    [CrossRef] [PubMed]
  8. A. A. Fotiadi and R. V. Kiyan, Opt. Lett. 23, 1805 (1998).
    [CrossRef]
  9. A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, Opt. Lett. 27, 83 (2002).
    [CrossRef]
  10. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifier: Fundamentals and Technology (Academic, San Diego, Calif., 1999).
  11. L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982).
    [CrossRef] [PubMed]

2003 (1)

2002 (2)

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, Opt. Lett. 27, 83 (2002).
[CrossRef]

D. A. Grukh, A. S. Kurkov, I. M. Razdobreev, and A. A. Fotiadi, Quantum Electron. 32, 1017 (2002).
[CrossRef]

2001 (1)

A. A. Fotiadi, A. Ikiades, O. Deparis, R. Kiyan, and S. Chernikov, Proc. SPIE 4354, 125 (2001).
[CrossRef]

1998 (2)

1997 (1)

1982 (1)

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifier: Fundamentals and Technology (Academic, San Diego, Calif., 1999).

Blondel, M.

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, Opt. Lett. 27, 83 (2002).
[CrossRef]

A. A. Fotiadi, P. Mégret, and M. Blondel, in Proceedings of the 2002 Symposium of the IEEE/LEOS Benelux Chapter, T. D. Visser, D. Lenstra, and H. F. Schouten, eds. (Vrije Universiteit, Amsterdam, The Netherlands, 2002), pp. 147–150.

Chen, Z. J.

Chernikov, S.

A. A. Fotiadi, A. Ikiades, O. Deparis, R. Kiyan, and S. Chernikov, Proc. SPIE 4354, 125 (2001).
[CrossRef]

Chernikov, S. V.

S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, Opt. Lett. 22, 298 (1997).
[CrossRef] [PubMed]

S. V. Chernikov and A. A. Fotiadi, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 477–478.

Chodorow, M.

Deparis, O.

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, Opt. Lett. 27, 83 (2002).
[CrossRef]

A. A. Fotiadi, A. Ikiades, O. Deparis, R. Kiyan, and S. Chernikov, Proc. SPIE 4354, 125 (2001).
[CrossRef]

Dong, X.-Y.

Fan, Y.-X.

Fotiadi, A. A.

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, Opt. Lett. 27, 83 (2002).
[CrossRef]

D. A. Grukh, A. S. Kurkov, I. M. Razdobreev, and A. A. Fotiadi, Quantum Electron. 32, 1017 (2002).
[CrossRef]

A. A. Fotiadi, A. Ikiades, O. Deparis, R. Kiyan, and S. Chernikov, Proc. SPIE 4354, 125 (2001).
[CrossRef]

A. A. Fotiadi and R. V. Kiyan, Opt. Lett. 23, 1805 (1998).
[CrossRef]

A. A. Fotiadi, P. Mégret, and M. Blondel, in Proceedings of the 2002 Symposium of the IEEE/LEOS Benelux Chapter, T. D. Visser, D. Lenstra, and H. F. Schouten, eds. (Vrije Universiteit, Amsterdam, The Netherlands, 2002), pp. 147–150.

S. V. Chernikov and A. A. Fotiadi, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 477–478.

Gapontsev, V. P.

Grudinin, A. B.

Grukh, D. A.

D. A. Grukh, A. S. Kurkov, I. M. Razdobreev, and A. A. Fotiadi, Quantum Electron. 32, 1017 (2002).
[CrossRef]

Hu, S.-L.

Ikiades, A.

A. A. Fotiadi, A. Ikiades, O. Deparis, R. Kiyan, and S. Chernikov, Proc. SPIE 4354, 125 (2001).
[CrossRef]

Kiyan, R.

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, Opt. Lett. 27, 83 (2002).
[CrossRef]

A. A. Fotiadi, A. Ikiades, O. Deparis, R. Kiyan, and S. Chernikov, Proc. SPIE 4354, 125 (2001).
[CrossRef]

Kiyan, R. V.

Kurkov, A. S.

D. A. Grukh, A. S. Kurkov, I. M. Razdobreev, and A. A. Fotiadi, Quantum Electron. 32, 1017 (2002).
[CrossRef]

Lu, F.-Y.

Lu, K.-C.

Mégret, P.

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, Opt. Lett. 27, 83 (2002).
[CrossRef]

A. A. Fotiadi, P. Mégret, and M. Blondel, in Proceedings of the 2002 Symposium of the IEEE/LEOS Benelux Chapter, T. D. Visser, D. Lenstra, and H. F. Schouten, eds. (Vrije Universiteit, Amsterdam, The Netherlands, 2002), pp. 147–150.

Minelly, J. D.

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifier: Fundamentals and Technology (Academic, San Diego, Calif., 1999).

Porta, J.

Razdobreev, I. M.

D. A. Grukh, A. S. Kurkov, I. M. Razdobreev, and A. A. Fotiadi, Quantum Electron. 32, 1017 (2002).
[CrossRef]

Shaw, H. J.

Simpson, J. R.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifier: Fundamentals and Technology (Academic, San Diego, Calif., 1999).

Stokes, L. F.

Taylor, J. R.

Wang, H.-J.

Zhang, G.-Y.

Zhu, Y.

Opt. Lett. (6)

Proc. SPIE (1)

A. A. Fotiadi, A. Ikiades, O. Deparis, R. Kiyan, and S. Chernikov, Proc. SPIE 4354, 125 (2001).
[CrossRef]

Quantum Electron. (1)

D. A. Grukh, A. S. Kurkov, I. M. Razdobreev, and A. A. Fotiadi, Quantum Electron. 32, 1017 (2002).
[CrossRef]

Other (3)

A. A. Fotiadi, P. Mégret, and M. Blondel, in Proceedings of the 2002 Symposium of the IEEE/LEOS Benelux Chapter, T. D. Visser, D. Lenstra, and H. F. Schouten, eds. (Vrije Universiteit, Amsterdam, The Netherlands, 2002), pp. 147–150.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifier: Fundamentals and Technology (Academic, San Diego, Calif., 1999).

S. V. Chernikov and A. A. Fotiadi, in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 477–478.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Self-Q-switched EDF laser. (b) Schematic of RS–SBS: (+) forward- and (-) backward-propagating waves at initial ν0νFBG and cascaded SBS frequencies ν1, ν2, and ν3. WDMs, wavelength-division multiplexers; SMF, single-mode fiber.

Fig. 2
Fig. 2

Oscilloscope traces and optical spectra (-11 GHz/division, insets) recorded from Output 2 and Output 1 in the configuration shown in Fig. 1(a). Peak power, 300 W.

Fig. 3
Fig. 3

Typical simulated traces. Curves A, B, D, M, O: powers (a) P0+, (b) P1+, (c) P2-, and (d) P3+ in corresponding points A, B, D, M, and O in Fig. 1(b); dashed curves, gain G. Model parameters: R0=1, R1=0.15, Pd=60 mW, gSBS=2.5×10-9 cm/W, T2=22 ns, S=85 µm2, S=35 µm2 (EDF), ΛR=5.7×10-7 m-1, δd=10, τ=10 ms, N=6.5×1024 m-3, Sd=10 µm2, gs*=4.2 dB/m, αs=4.35 dB/m, αp=2.5 dB/m.

Fig. 4
Fig. 4

Simulated traces for Output 1 and Output 2 (see Fig. 2).

Fig. 5
Fig. 5

Statistical distributions of the pulse parameters: (a) peak power (lighter bars) and widths (darker bars), (b) period; means are 290 W, 14 ns, and 293 µs, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ncEk±t±Ek±z=gSBS2Sρk-1*Ek-1-ρk±Ek+1+gPIEk±+ηk±Ek,T2ρk±t+1+iδdρk±=Ek±Ek+1*+fk±z,t,ncPp±t±Pp±z=αpgs*+αs2gPI-gs*Pp±,gPIt=αpgs*-2gPI2NSdhνpPp-gPIgs*+αsNSdhνs×kEk+Ek+*+Ek-Ek-*-2gPI+αs2τ,

Metrics