Abstract

We report a resonantly fiber-laser-pumped Er:YAG laser operating at the eye-safe wavelength of 1645 nm, exhibiting 43% optical efficiency and 54% incident slope efficiency and emitting 7-W average power when repetitively Q switched at 10 kHz. To our knowledge, this is the best performance (conversion efficiency and average power) obtained from a bulk solid-state Q-switched erbium laser. At a 1.1-kHz pulse repetition frequency the laser produces 3.4-mJ pulses with a corresponding peak power of 162 kW. Frequency doubling to produce 822.5-nm, 4.7-kW pulses at 10 kHz was performed to demonstrate the laser’s utility.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Abdolvand, D. Shen, L. Cooper, R. Williams, and W. Clarkson, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 23–25.
  2. E. Lippert, G. Rustad, and K. Stenersen, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 266–268.
  3. S. D. Setzler, K. J. Snell, T. M. Pollak, P. A. Budni, Y. E. Young, and E. P. Chicklis, Opt. Lett. 28, 1787 (2003).
    [CrossRef] [PubMed]
  4. R. C. Stoneman, J. G. Lynn, and L. Esterowitz, IEEE J. Quantum Electron. 28, 1041 (1992).
    [CrossRef]
  5. V. Lupei, T. Taira, N. Pavel, I. Shoji, and A. Ikesue, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 559–560.
  6. D. K. Killinger, “Er:YAG laser crystal characterization,” Quarterly Tech. Rep. Solid-State Research (Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Mass., 1985), p. 9.
  7. D. K. Killinger, in Conference on Lasers and Electro-Optics, Vol. 14 of 1987 OSA Digest Series (Optical Society of America, Washington, D.C., 1987), p. 240.
  8. K. Spariosu and M. Birnbaum, in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 127–130.
  9. K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
    [CrossRef]
  10. With a pulse width of 21 ns this corresponds to an intracavity fluence of 8 J/cm 2, corresponding to an intracavity fluence of 5.5 J/cm 2 for a 10-ns pulse width using a square-root time dependence for the damage threshold, which is notably lower than the typical 10-J/cm 2 damage threshold usually quoted for coated optics. The requirement that this dichroic be highly reflective for 1.64 and highly transmissive for 1.53mm necessitated the use of more layers than are typically used in standard coatings, reducing the dichroic’s damage threshold from what may normally be expected in an ordinary coating.
  11. SHG was not attempted with the 4-cm Er:YAG crystal in the laser.
  12. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  13. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]

2003

1997

1994

K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, IEEE J. Quantum Electron. 28, 1041 (1992).
[CrossRef]

Abdolvand, A.

A. Abdolvand, D. Shen, L. Cooper, R. Williams, and W. Clarkson, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 23–25.

Birnbaum, M.

K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
[CrossRef]

K. Spariosu and M. Birnbaum, in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 127–130.

Budni, P. A.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Chicklis, E. P.

Clarkson, W.

A. Abdolvand, D. Shen, L. Cooper, R. Williams, and W. Clarkson, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 23–25.

Cooper, L.

A. Abdolvand, D. Shen, L. Cooper, R. Williams, and W. Clarkson, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 23–25.

Esterowitz, L.

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, IEEE J. Quantum Electron. 28, 1041 (1992).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Ikesue, A.

V. Lupei, T. Taira, N. Pavel, I. Shoji, and A. Ikesue, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 559–560.

Jundt, D. H.

D. H. Jundt, Opt. Lett. 22, 1553 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Killinger, D. K.

D. K. Killinger, “Er:YAG laser crystal characterization,” Quarterly Tech. Rep. Solid-State Research (Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Mass., 1985), p. 9.

D. K. Killinger, in Conference on Lasers and Electro-Optics, Vol. 14 of 1987 OSA Digest Series (Optical Society of America, Washington, D.C., 1987), p. 240.

Lippert, E.

E. Lippert, G. Rustad, and K. Stenersen, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 266–268.

Lupei, V.

V. Lupei, T. Taira, N. Pavel, I. Shoji, and A. Ikesue, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 559–560.

Lynn, J. G.

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, IEEE J. Quantum Electron. 28, 1041 (1992).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Pavel, N.

V. Lupei, T. Taira, N. Pavel, I. Shoji, and A. Ikesue, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 559–560.

Pollak, T. M.

Rustad, G.

E. Lippert, G. Rustad, and K. Stenersen, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 266–268.

Setzler, S. D.

Shen, D.

A. Abdolvand, D. Shen, L. Cooper, R. Williams, and W. Clarkson, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 23–25.

Shoji, I.

V. Lupei, T. Taira, N. Pavel, I. Shoji, and A. Ikesue, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 559–560.

Snell, K. J.

Spariosu, K.

K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
[CrossRef]

K. Spariosu and M. Birnbaum, in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 127–130.

Stenersen, K.

E. Lippert, G. Rustad, and K. Stenersen, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 266–268.

Stoneman, R. C.

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, IEEE J. Quantum Electron. 28, 1041 (1992).
[CrossRef]

Taira, T.

V. Lupei, T. Taira, N. Pavel, I. Shoji, and A. Ikesue, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 559–560.

Williams, R.

A. Abdolvand, D. Shen, L. Cooper, R. Williams, and W. Clarkson, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 23–25.

Young, Y. E.

1987 OSA Digest Series

D. K. Killinger, in Conference on Lasers and Electro-Optics, Vol. 14 of 1987 OSA Digest Series (Optical Society of America, Washington, D.C., 1987), p. 240.

IEEE J. Quantum Electron.

K. Spariosu and M. Birnbaum, IEEE J. Quantum Electron. 30, 1044 (1994).
[CrossRef]

R. C. Stoneman, J. G. Lynn, and L. Esterowitz, IEEE J. Quantum Electron. 28, 1041 (1992).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Opt. Lett.

OSA Proceedings Series

K. Spariosu and M. Birnbaum, in Advanced Solid-State Lasers, Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 127–130.

OSA Trends in Optics and Photonics Series

V. Lupei, T. Taira, N. Pavel, I. Shoji, and A. Ikesue, in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), pp. 559–560.

A. Abdolvand, D. Shen, L. Cooper, R. Williams, and W. Clarkson, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 23–25.

OSA Trends in Optics and Photonics Series

E. Lippert, G. Rustad, and K. Stenersen, in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 266–268.

Quarterly Tech. Rep. Solid-State Research

D. K. Killinger, “Er:YAG laser crystal characterization,” Quarterly Tech. Rep. Solid-State Research (Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Mass., 1985), p. 9.

Other

With a pulse width of 21 ns this corresponds to an intracavity fluence of 8 J/cm 2, corresponding to an intracavity fluence of 5.5 J/cm 2 for a 10-ns pulse width using a square-root time dependence for the damage threshold, which is notably lower than the typical 10-J/cm 2 damage threshold usually quoted for coated optics. The requirement that this dichroic be highly reflective for 1.64 and highly transmissive for 1.53mm necessitated the use of more layers than are typically used in standard coatings, reducing the dichroic’s damage threshold from what may normally be expected in an ordinary coating.

SHG was not attempted with the 4-cm Er:YAG crystal in the laser.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement: QS, Q-switch; OC, output coupler; EDFL, erbium-doped fiber lasers; TFP, thin-film polarizer.

Fig. 2
Fig. 2

Output versus incident pump power for the Er:YAG laser for cw and 10-kHz Q-switched cases. Inset, image of the output beam profile.

Fig. 3
Fig. 3

Er:YAG laser pulse energy (open squares, left-hand scale) and pulse width (filled diamonds, right-hand scale) versus PRF. Inset, average power versus PRF.

Fig. 4
Fig. 4

Average internal SHG power (filled diamonds and left-hand scale) and conversion efficiency (open squares and right-hand scale) versus average internal pump power. The larger pair of points represents the best performance, measured when T=165.0 °C. Inset, average internal SHG power versus PPLN temperature.

Metrics