Abstract

One-dimensional localized plasmons (channel polaritons) guided by a triangular groove on a metal substrate are investigated numerically by means of a finite-difference time-domain algorithm. Dispersion, existence conditions, and dissipation of these waves are analyzed. In particular, it is demonstrated that the localization of the predicted plasmons in acute grooves may be substantially stronger than what is allowed by the diffraction limit. As a result, the predicted waves may be significant for the development of new subwavelength waveguides and interconnectors for nano-optics and photonics.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Krenn, Nature Mater. 2, 210 (2003).
    [CrossRef]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
    [CrossRef]
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).
    [CrossRef]
  4. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
    [CrossRef] [PubMed]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
    [CrossRef]
  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [CrossRef] [PubMed]
  7. P. Berini, Opt. Lett. 24, 1011 (1999).
    [CrossRef]
  8. P. Berini, Phys. Rev. B 61, 10484 (2000).
    [CrossRef]
  9. P. Berini, Phys. Rev. B 63, 125417 (2001).
    [CrossRef]
  10. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, Opt. Lett. 25, 844 (2000).
    [CrossRef]
  11. M. S. Kushwaha, Surf. Sci. Rep. 41, 1 (2001).
  12. T. Yatsui, M. Kougori, and M. Ohtsu, Appl. Phys. Lett. 79, 4583 (2001).
    [CrossRef]
  13. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
    [CrossRef]
  14. K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
    [CrossRef]
  15. I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  16. D. Christensen and D. Fowers, Biosens. Bioelectron. 11, 677 (1996).
    [CrossRef]
  17. D. Fowers, “Modeling of dielectrics, metals, and surface plasmon resonance using the finite-difference time-domain method and the kinetic force equation,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1994).
  18. G. Mur, IEEE Trans. Electromagn. Compat. 40, 100 (1998).
    [CrossRef]

2003 (3)

J. R. Krenn, Nature Mater. 2, 210 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
[CrossRef]

2002 (3)

I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

2001 (3)

P. Berini, Phys. Rev. B 63, 125417 (2001).
[CrossRef]

M. S. Kushwaha, Surf. Sci. Rep. 41, 1 (2001).

T. Yatsui, M. Kougori, and M. Ohtsu, Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

2000 (3)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

P. Berini, Phys. Rev. B 61, 10484 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, Opt. Lett. 25, 844 (2000).
[CrossRef]

1999 (1)

1998 (2)

1997 (1)

1996 (1)

D. Christensen and D. Fowers, Biosens. Bioelectron. 11, 677 (1996).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).
[CrossRef]

Berini, P.

Berolo, E.

Charbonneau, R.

Christensen, D.

D. Christensen and D. Fowers, Biosens. Bioelectron. 11, 677 (1996).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

Fowers, D.

D. Christensen and D. Fowers, Biosens. Bioelectron. 11, 677 (1996).
[CrossRef]

D. Fowers, “Modeling of dielectrics, metals, and surface plasmon resonance using the finite-difference time-domain method and the kinetic force equation,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1994).

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Kawazoe, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Kobayashi, K.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Kobayashi, T.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Kougori, M.

T. Yatsui, M. Kougori, and M. Ohtsu, Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

Krenn, J. R.

J. R. Krenn, Nature Mater. 2, 210 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).
[CrossRef]

Kushwaha, M. S.

M. S. Kushwaha, Surf. Sci. Rep. 41, 1 (2001).

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998).
[CrossRef]

Lisicka-Shrzek, E.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Morimoto, A.

Mur, G.

G. Mur, IEEE Trans. Electromagn. Compat. 40, 100 (1998).
[CrossRef]

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Ohtsu, M.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

T. Yatsui, M. Kougori, and M. Ohtsu, Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

Quinten, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Sangu, S.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

Takahara, J.

Taki, H.

Tanaka, K.

K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
[CrossRef]

Yamagishi, S.

Yatsui, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

T. Yatsui, M. Kougori, and M. Ohtsu, Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

T. Yatsui, M. Kougori, and M. Ohtsu, Appl. Phys. Lett. 79, 4583 (2001).
[CrossRef]

K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).
[CrossRef]

Biosens. Bioelectron. (1)

D. Christensen and D. Fowers, Biosens. Bioelectron. 11, 677 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

G. Mur, IEEE Trans. Electromagn. Compat. 40, 100 (1998).
[CrossRef]

Nature Mater. (2)

J. R. Krenn, Nature Mater. 2, 210 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (3)

P. Berini, Phys. Rev. B 61, 10484 (2000).
[CrossRef]

P. Berini, Phys. Rev. B 63, 125417 (2001).
[CrossRef]

I. V. Novikov and A. A. Maradudin, Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).
[CrossRef] [PubMed]

Surf. Sci. Rep. (1)

M. S. Kushwaha, Surf. Sci. Rep. 41, 1 (2001).

Other (1)

D. Fowers, “Modeling of dielectrics, metals, and surface plasmon resonance using the finite-difference time-domain method and the kinetic force equation,” M.S. thesis (University of Utah, Salt Lake City, Utah, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Structure with a triangular groove (dielectric wedge) in a metallic medium. (b) Distribution of the magnitude of the electric field in the vacuum groove =1 in silver with free charge density ρ-7.684×109 C/m-3 (Ref. 15) and damping frequency fd=0 (i.e., m=-16.22, with no dissipation in the metal), resulting from the generation of WCPs by a bulk wave incident onto the end of the groove (at x=0) at an angle of 45° with respect to the x axis in (a). The magnetic field in the incident wave is in the x,y plane, groove angle θ=30°, and λvacuum=0.6328 µm. (c) Magnified field structure from (b) for the interval 10 µm<x<25 µm. (d) Same as in (b) but with fd=1.4332×1013 Hz (Ref. 15): m=-16.22+0.52i. (e) Same as in (b) but for θ=90°.

Fig. 2
Fig. 2

(a) Dependence of the Fourier amplitude of the field at the tip of the groove [at 0<x<40 µm in Fig. 1(b)] on the wave vector. The two strong maxima correspond to two different WCP modes with q11.195×107 m-1 and q21.076×107 m-1. (b) Dependence of the wave number q1 of the fundamental WCP mode (solid curve) on groove angle θ (10° steps and an additional calculation at θ=5°); the dotted curve represents the wave number qsp of the surface plasmon.

Fig. 3
Fig. 3

Typical dispersion curves for WCPs in the silver–vacuum groove structure with three different angles θ. Solid curve, surface plasmons at an isolated smooth silver–vacuum interface.

Metrics