Abstract

The dynamic signature of the subwavelength variation of a slit is shown to be determinable from far-field irradiance with a precision of better than 1 nm. One can increase the efficiency of measurement of the subwavelength’s signature by adjusting the detection width over which the subwavelength variation is detected. The subwavelength variation of a rectangular aperture was also examined to show the general feasibility.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 188 (2002).
    [CrossRef]
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  4. P.-T. Lee, J. R. Caos, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, Appl. Phys. Lett. 81, 3311 (2002).
    [CrossRef]
  5. C.-H. Lee, H.-Y. Mong, and W.-C. Lin, Opt. Lett. 27, 1773 (2002).
    [CrossRef]
  6. M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
    [CrossRef]
  7. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), p. 38.
  8. S. Selci and M. Righini, Opt. Lett. 27, 1971 (2002).
    [CrossRef]
  9. Ref. 7, p. 74.
  10. In the simulation, only a simple time-difference approximation was used to derive the width of the slit from the rate of its variation: at+Δt=at+da/dt|at×Δt.
  11. A high-speed detector that can operate at up to 25 GHz is commerically available; see http://www.newfocus.com/support/manuals/detectors_manuals.cfm .
  12. Commercial high-performance optical meters can detect powers of as much as ∼100 fW; see http://www.newport.com/store/catalogmap.asp .

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

2002

P.-T. Lee, J. R. Caos, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, Appl. Phys. Lett. 81, 3311 (2002).
[CrossRef]

C.-H. Lee, H.-Y. Mong, and W.-C. Lin, Opt. Lett. 27, 1773 (2002).
[CrossRef]

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

S. Selci and M. Righini, Opt. Lett. 27, 1971 (2002).
[CrossRef]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 188 (2002).
[CrossRef]

2001

Anslyn, E. V.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Biener, G.

Bomzon, Z.

Caos, J. R.

P.-T. Lee, J. R. Caos, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, Appl. Phys. Lett. 81, 3311 (2002).
[CrossRef]

Choi, S.-J.

P.-T. Lee, J. R. Caos, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, Appl. Phys. Lett. 81, 3311 (2002).
[CrossRef]

Dapkus, P. D.

P.-T. Lee, J. R. Caos, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, Appl. Phys. Lett. 81, 3311 (2002).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Descour, M. R.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Dupuis, R. D.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Ebbesen, T. W.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), p. 38.

Hasman, E.

Karkkainen, A. H. O.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Kilic, B.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Kleiner, V.

Lee, C.-H.

Lee, P.-T.

P.-T. Lee, J. R. Caos, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, Appl. Phys. Lett. 81, 3311 (2002).
[CrossRef]

Lezec, H. J.

Liang, C.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Lin, W.-C.

Linke, R. A.

Madenci, E.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Mong, H.-Y.

O’Brien, J. D.

P.-T. Lee, J. R. Caos, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, Appl. Phys. Lett. 81, 3311 (2002).
[CrossRef]

Pellerin, K. M.

Rantala, J. T.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Richards-Kortum, R. R.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Righini, M.

Rogers, J. D.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Schul, R. J.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Selci, S.

Thio, T.

Tigges, C. P.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Wei, Z.-J.

P.-T. Lee, J. R. Caos, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, Appl. Phys. Lett. 81, 3311 (2002).
[CrossRef]

Weinstein, R. S.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Willison, C. G.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Appl. Phys. Lett.

P.-T. Lee, J. R. Caos, S.-J. Choi, Z.-J. Wei, J. D. O’Brien, and P. D. Dapkus, Appl. Phys. Lett. 81, 3311 (2002).
[CrossRef]

IEEE J. Quantum Electron.

M. R. Descour, A. H. O. Karkkainen, J. D. Rogers, C. Liang, R. S. Weinstein, J. T. Rantala, B. Kilic, E. Madenci, R. R. Richards-Kortum, E. V. Anslyn, R. D. Dupuis, R. J. Schul, C. G. Willison, and C. P. Tigges, IEEE J. Quantum Electron. 38, 122 (2002).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Other

Ref. 7, p. 74.

In the simulation, only a simple time-difference approximation was used to derive the width of the slit from the rate of its variation: at+Δt=at+da/dt|at×Δt.

A high-speed detector that can operate at up to 25 GHz is commerically available; see http://www.newfocus.com/support/manuals/detectors_manuals.cfm .

Commercial high-performance optical meters can detect powers of as much as ∼100 fW; see http://www.newport.com/store/catalogmap.asp .

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), p. 38.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Deduced subwavelength variation a* and difference a*-a between the deduced value and the simulation-setting value for a slit; (a), (b) periodic; (c), (d) quasi-periodic; (e), (f) random fluctuations.

Fig. 2
Fig. 2

Subwavelength variation for a rectangular aperture: (a) deduced, a*; (b) difference a*-a. Dotted curves, periodic; lighter solid curves, quasi-periodic; and darker solid line curves, random variations.

Fig. 3
Fig. 3

(a) Rate of variation of power: optimized rate, lighter curve; difference between these values and those of the nonoptimized variations, darker curve. (b) Derivative intensities: for optimized variation, darker curve; for nonoptimized variation, lighter curve. (c) Sensitivity-enhanced percentage of power variation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dadt=dPzdtdPzda=C0dPzdt,
dadttdPzdttdPzdaa0=C0dPzdtt,
Ux,y,z=expjkzexpjk/2zx2+y2λjz×-bb-aaU,ηexp-j2πλzx+yηddη.

Metrics