Abstract

We present what is to our knowledge a new approach to generating tunable blue light by cascaded nonlinear frequency conversion in a single LiTaO3 crystal. Simultaneous quasi-phase matching of an optical parametric generation process and a sum-frequency mixing process is achieved by means of structuring the crystal with a quasi-periodic optical superlattice. The spectral (wavelength tuning and bandwidth) and power characteristics of the blue-light generation are studied with a fixed-wavelength 532-nm picosecond laser and a wavelength-tunable nanosecond optical parametric oscillator (OPO) as the pump sources. By tuning the OPO wavelength, we could tune the blue output over 20 nm. Temperature tuning of the blue output at a fixed pump wavelength of 532 nm was limited to 1.5 nm. A maximum blue power of 15 µW was generated at a pump power of 0.5 mW, corresponding to an efficiency of 3%.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  2. R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
    [CrossRef]
  3. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  4. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  5. Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
    [CrossRef]
  6. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
    [CrossRef]
  7. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, Opt. Lett. 26, 899 (2001).
    [CrossRef]
  8. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
    [CrossRef]
  9. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997).
    [CrossRef]
  10. J. P. Meyn and M. M. Fejer, Opt. Lett. 22, 1214 (1997).
    [CrossRef] [PubMed]
  11. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  12. Z. W. Liu, Y. Du, J. Liao, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. T. Wang, J. L. He, C. Zhang, and N. B. Ming, J. Opt. Soc. Am. B 19, 1676 (2002).
    [CrossRef]
  13. B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
    [CrossRef]

2002 (1)

2001 (2)

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, Opt. Lett. 26, 899 (2001).
[CrossRef]

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

1999 (1)

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

1997 (3)

1995 (2)

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1979 (1)

R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Baumgartner, R. A.

R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

Dong, B.-Z.

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

Du, Y.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

Gu, B.-Y.

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

He, J. L.

Hong, J. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

Ito, R.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kitamoto, A.

Kondo, T.

Liang, X. Y.

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

Liao, J.

Lin, Z. W.

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

Liu, H.

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

Liu, Z. W.

Lu, Y. Q.

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Meyn, J. P.

Ming, N. B.

Z. W. Liu, Y. Du, J. Liao, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. T. Wang, J. L. He, C. Zhang, and N. B. Ming, J. Opt. Soc. Am. B 19, 1676 (2002).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, Opt. Lett. 26, 899 (2001).
[CrossRef]

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

Myers, L. E.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Pierce, J. W.

Qin, Y. Q.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Shirane, M.

Shoji, I.

Shu, H.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

Wang, H. T.

Wei, H.

Xu, Z. Y.

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

Yang, G.-Z.

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

Zhang, C.

Zhang, Y.

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

Zhang, Z. Y.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

Zhu, S. N.

Z. W. Liu, Y. Du, J. Liao, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. T. Wang, J. L. He, C. Zhang, and N. B. Ming, J. Opt. Soc. Am. B 19, 1676 (2002).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, Opt. Lett. 26, 899 (2001).
[CrossRef]

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

Zhu, Y. Y.

Z. W. Liu, Y. Du, J. Liao, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. T. Wang, J. L. He, C. Zhang, and N. B. Ming, J. Opt. Soc. Am. B 19, 1676 (2002).
[CrossRef]

C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, Opt. Lett. 26, 899 (2001).
[CrossRef]

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

B.-Y. Gu, B.-Z. Dong, Y. Zhang, and G.-Z. Yang, Appl. Phys. Lett. 75, 2175 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. A. Baumgartner and R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Appl. Phys. (1)

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (2)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Science (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

Solid State Commun. (1)

Z. W. Lin, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Solid State Commun. 119, 363 (2001).
[CrossRef]

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

QPOS made from a LiTaO3 crystal. The arrows indicate the directions of spontaneous polarization. (a) Two building blocks, A and B, each composed of one positive and one negative ferroelectric domain. (b) Schematic diagram showing a QPOS composed of two blocks, A and B, arranged in quasi-periodic sequence and the polarization orientation of electric fields in these two parametric processes with respect to the superlattice.

Fig. 2
Fig. 2

Signal and idler wavelength tuning versus pump wavelength. The inset shows the dependence of the bandwidth of the signal on pump wavelength. The calculated curves are based on the Sellmeier coefficients of LiTaO3.10

Fig. 3
Fig. 3

Center wavelength of blue light versus pump wavelength. The inset shows the spectra of blue light.

Fig. 4
Fig. 4

Temperature dependences of (a) signal and (b) idler (see text). The bars in the figures represent the bandwidths of the spectra, and the squares indicate the wavelength of the corresponding idler that participated in QPM blue generation. The inset shows the spectra of blue light. The bandwidth increases with temperature. A possible explanation for this is the uneven temperature distribution in the measured sample, which is due to the fact that the heater was an open Peltier device.

Fig. 5
Fig. 5

Average output power of blue as a function of pump power with a picosecond laser.

Metrics