Abstract

We present and experimentally validate self-collimation in planar photonic crystals as a new means of achieving structureless confinement of light in optical devices. We demonstrate the ability to arbitrarily route light by exploiting the dispersive characteristics of the photonic crystal. Propagation loss as low as 2.17 dB/mm is observed, and proposed applications of these devices are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  3. D. W. Prather, A. Sharkawy, and S. Shouyuan, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.
  4. T. F. Krauss and T. Baba, eds., feature section on photonic crystal structures and applications, IEEE J. Quantum Electron. 38, 724–963 (2002).
    [CrossRef]
  5. M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
    [CrossRef]
  6. A. Taflove, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
    [CrossRef]
  8. J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
    [CrossRef]
  9. L. Wu, M. Mazilu, and T. F. Krauss, J. Lightwave Technol. 21, 561 (2003).
    [CrossRef]
  10. D. W. Prather, J. Murakowski, S. Y. Shi, S. Venkataraman, A. Sharkawy, C. H. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002).
    [CrossRef]
  11. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
    [CrossRef]
  12. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
    [CrossRef]
  13. C. Chen, A. Sharkawy, D. M. Pustai, S. Shi, and D. W. Prather, Opt. Express 11, 3153 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]

2003 (2)

2002 (5)

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[CrossRef]

D. W. Prather, J. Murakowski, S. Y. Shi, S. Venkataraman, A. Sharkawy, C. H. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

T. F. Krauss and T. Baba, eds., feature section on photonic crystal structures and applications, IEEE J. Quantum Electron. 38, 724–963 (2002).
[CrossRef]

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

1991 (1)

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

1987 (2)

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Baba, T.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Chen, C.

Chen, C. H.

Fukaya, N.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Iwai, T.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Krauss, T. F.

Loncar, M.

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[CrossRef]

Maradudin, A. A.

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

Mazilu, M.

Motegi, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Murakowski, J.

Notomi, M.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Plihal, M.

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

Prather, D. W.

C. Chen, A. Sharkawy, D. M. Pustai, S. Shi, and D. W. Prather, Opt. Express 11, 3153 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

D. W. Prather, J. Murakowski, S. Y. Shi, S. Venkataraman, A. Sharkawy, C. H. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002).
[CrossRef]

D. W. Prather, A. Sharkawy, and S. Shouyuan, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.

Pustai, D.

Pustai, D. M.

Sakai, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Scherer, A.

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[CrossRef]

Sharkawy, A.

C. Chen, A. Sharkawy, D. M. Pustai, S. Shi, and D. W. Prather, Opt. Express 11, 3153 (2003), http://www.opticsexpress.org .
[CrossRef] [PubMed]

D. W. Prather, J. Murakowski, S. Y. Shi, S. Venkataraman, A. Sharkawy, C. H. Chen, and D. Pustai, Opt. Lett. 27, 1601 (2002).
[CrossRef]

D. W. Prather, A. Sharkawy, and S. Shouyuan, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.

Shi, S.

Shi, S. Y.

Shinya, A.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Shouyuan, S.

D. W. Prather, A. Sharkawy, and S. Shouyuan, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

Venkataraman, S.

Watanabe, Y.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Witzens, J.

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[CrossRef]

Wu, L.

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. F. Krauss and T. Baba, eds., feature section on photonic crystal structures and applications, IEEE J. Quantum Electron. 38, 724–963 (2002).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, IEEE J. Quantum Electron. 38, 736 (2002).
[CrossRef]

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Witzens, M. Loncar, and A. Scherer, IEEE J. Sel. Top. Quantum Electron. 8, 1246 (2002).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Plihal and A. A. Maradudin, Phys. Rev. B 44, 8565 (1991).
[CrossRef]

Phys. Rev. Lett. (2)

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Other (2)

D. W. Prather, A. Sharkawy, and S. Shouyuan, in Handbook of Nanoscience, Engineering, and Technology, W. A. Goddard, D. W. Brenner, S. E. Lyshevski, and G. J. Iafrate, eds. (CRC Press, Boca Raton, Fla., 2002), pp. 211–232.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dispersion surface of a PhC designed to have a square EFC for specified frequencies. The surface shown represents the second band. (a) A dispersion surface is a three-dimensional plot of the frequency versus planar wave vectors kx,ky. (b) A square EFC is suitable for spatial beam routing applications. k0 is the incident wave vector, k is the wave vector in the PhC, and kω is the group velocity in the PhC corresponding to wave vector k.

Fig. 2
Fig. 2

(a) FDTD simulation of a point source located within a dispersion-guiding PhC lattice. (b) Scanning electron micrograph of a fabricated dispersion-based PhC waveguide. Scale bar, 20 µm. (c) Image captured by a near-IR camera of the scattered light, where λ=1480 nm, at the PhC–silicon boundaries. The point located at the output shows how the light is confined laterally within the PhC lattice.

Fig. 3
Fig. 3

Routing capability of a material having a square-shaped equifrequency dispersion contour. (a) Three-dimensional FDTD simulation of light guided through a PhC lattice and routed by reflection from a mirror. (b) Image of the scattered light as it is reflected by the mirror, where λ=1432 nm.

Fig. 4
Fig. 4

Simultaneous propagation of optical beams in a dispersion-guiding PhC, showing the lack of interaction between the various channels. (a) Three-dimensional FDTD simulation. (b) Experimental results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

vg=kωk,

Metrics