Abstract

We report Fano resonances in the frustrated total internal reflection (TIR) spectra of a prism-coupled square micropillar. Our angle-selective frustrated TIR technique reveals characteristically asymmetric resonance line shapes, which evolve spectrally over approximately a 2π phase in the far field within a subdegree range of reflection angles. We theoretically model the asymmetric line shapes by the interference between a high-Q resonance that is evanescently coupled and partially confined by TIR, and a coherent background that is total internally reflected at the prism surface without coupling to the micropillar.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, and S. T. Ho, Opt. Lett. 22, 1244 (1997).
    [CrossRef] [PubMed]
  2. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
    [CrossRef]
  3. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
    [CrossRef]
  4. A. W. Poon, F. Courvoisier, and R. K. Chang, Opt. Lett. 26, 632 (2001).
    [CrossRef]
  5. Y. L. Pan and R. K. Chang, Appl. Phys. Lett. 82, 487 (2003).
    [CrossRef]
  6. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  7. S. Fan, Appl. Phys. Lett. 80, 908 (2002).
    [CrossRef]
  8. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.
  9. S. Schiller, I. I. Yu, M. M. Fejer, and R. L. Byer, Opt. Lett. 17, 378 (1992).
    [CrossRef] [PubMed]
  10. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999).
    [CrossRef]

2003 (1)

Y. L. Pan and R. K. Chang, Appl. Phys. Lett. 82, 487 (2003).
[CrossRef]

2002 (1)

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

2001 (1)

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

1997 (1)

1992 (1)

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Byer, R. L.

Chang, R. K.

Y. L. Pan and R. K. Chang, Appl. Phys. Lett. 82, 487 (2003).
[CrossRef]

A. W. Poon, F. Courvoisier, and R. K. Chang, Opt. Lett. 26, 632 (2001).
[CrossRef]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Cojocaru, C.

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.

Courvoisier, F.

Fan, S.

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Fejer, M. M.

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Hagness, S. C.

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Ho, S. T.

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Letartre, X.

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.

Levenson, A.

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Monnier, P.

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.

Pan, Y. L.

Y. L. Pan and R. K. Chang, Appl. Phys. Lett. 82, 487 (2003).
[CrossRef]

Poon, A. W.

Rafizadeh, D.

Raineri, F.

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.

Raj, R.

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.

Schiller, S.

Seassal, C.

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.

Stair, K. A.

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Taflove, A.

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Viktorovitch, P.

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

Yu, I. I.

Zhang, J. P.

Appl. Phys. Lett. (2)

Y. L. Pan and R. K. Chang, Appl. Phys. Lett. 82, 487 (2003).
[CrossRef]

S. Fan, Appl. Phys. Lett. 80, 908 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Opt. Lett. (3)

Other (3)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 1999).
[CrossRef]

F. Raineri, C. Cojocaru, R. Raj, P. Monnier, C. Seassal, X. Letartre, P. Viktorovitch, and A. Levenson, in Quantum Electronics and Laser Science (QELS), Vol. 90 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), postdeadline paper QThPDA1.

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup for measuring Fano resonances in a prism-coupled square μ-pillar: MM1, MM2, multimode fibers; PD1, PD2, photodiodes; P, polarizer; A, analyzer. Z, translation. (b) Measured sidewall-transmitted spectrum, (c) measured reflected spectrum at θ45°; FSR, free spectral range.

Fig. 2
Fig. 2

Measured Fano resonances in TM-polarized reflection spectra (a) θ45.71°, (b) θ45.49°, (c) θ45.27°, (d) θ45.11°, (e) θ44.94°. Int., intensity.

Fig. 3
Fig. 3

Schematic of the theoretical model. Ray R is coupled to a four-bounce ray orbit. Ray B represents a coherent background that is total internally reflected at the prism surface without coupling to the cavity. The dashed arrow represents the surface wave leakage.

Fig. 4
Fig. 4

Calculated resonance line shapes with a coherent background. x=800 nm, θR=44°, α=0.19. (a) ΦR-ΦB=0, (b) ΦR-ΦB=0.5π, (c) ΦR-ΦB=π, (d) ΦR-ΦB=1.5π.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ERE0=rFTIR+tFTIR2 expiϕexp-α1-rFTIR expiϕexp-α=ERE0expiΦR,
II0=ERE02+1+2ERE0cosΦR-ΦB.

Metrics