Abstract

An air-core microstructured fiber design that supports a single-polarization, circularly symmetric nondegenerate mode is presented. The fiber design is modeled directly, and the microstructured cladding is analyzed by use of band diagrams to elucidate the mechanism through which polarization nondegeneracy is achieved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  3. R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
    [CrossRef] [PubMed]
  4. J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
    [CrossRef]
  5. A. Ferrando and J. J. Miret, Appl. Phys. Lett. 78, 3184 (2001).
    [CrossRef]
  6. I. Bassett and A. Argyros, Opt. Express 10, 1342 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  7. A. Argyros, I. Bassett, M. A. van Eijkelenborg, M. C. J. Large, J. Nagari, N. A. P. Nicorovici, R. C. McPhedran, and C. M. de Sterke, Opt. Express 9, 813 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  8. N. Issa and L. Poladian, J. Lightwave Technol. 21, 1005 (2003).
    [CrossRef]
  9. Y. Xu, A. Yariv, J. G. Fleming, and S.-Y. Lin, Opt. Express 11, 1039 (2003), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  10. A. Argyros and I. Bassett, in Proceedings of the Symposium on Optical Fibre Measurements (SOFM) (U.S. GPO, Washington, D.C., 2002), p. 135.
  11. A. Argyros, Opt. Express 10, 1411 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  12. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
    [CrossRef]

2003 (3)

2002 (2)

2001 (2)

1999 (1)

R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
[CrossRef] [PubMed]

1997 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Allen, D. C.

R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
[CrossRef] [PubMed]

Argyros, A.

Bassett, I.

Birks, T. A.

R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
[CrossRef] [PubMed]

Cregan, R. F.

R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
[CrossRef] [PubMed]

de Sterke, C. M.

Ferrando, A.

A. Ferrando and J. J. Miret, Appl. Phys. Lett. 78, 3184 (2001).
[CrossRef]

Fleming, J. G.

Issa, N.

Knight, J. C.

R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
[CrossRef] [PubMed]

Large, M. C. J.

Lin, S.-Y.

Managan, B. J.

R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
[CrossRef] [PubMed]

McPhedran, R. C.

Miret, J. J.

A. Ferrando and J. J. Miret, Appl. Phys. Lett. 78, 3184 (2001).
[CrossRef]

Nagari, J.

Nicorovici, N. A. P.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Poladian, L.

Roberts, P. J.

R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
[CrossRef] [PubMed]

Russell, P.

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
[CrossRef] [PubMed]

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

van Eijkelenborg, M. A.

Xu, Y.

Yariv, A.

Appl. Phys. Lett. (1)

A. Ferrando and J. J. Miret, Appl. Phys. Lett. 78, 3184 (2001).
[CrossRef]

J. Lightwave Technol. (2)

N. Issa and L. Poladian, J. Lightwave Technol. 21, 1005 (2003).
[CrossRef]

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Science (2)

R. F. Cregan, B. J. Managan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allen, Science 285, 1537 (1999).
[CrossRef] [PubMed]

P. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Other (2)

A. Argyros and I. Bassett, in Proceedings of the Symposium on Optical Fibre Measurements (SOFM) (U.S. GPO, Washington, D.C., 2002), p. 135.

K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section of a microstructured PBG fiber design with six rings.

Fig. 2
Fig. 2

Confinement loss as a function of wavelength and of the number of rings for TE01, TE02, HE11, and TM01 modes. The loss of the TE01 mode exhibits the largest decrease as rings are added, indicating the development of a TE bandgap centered near 940 nm.

Fig. 3
Fig. 3

Confinement loss of the least-loss wavelength as a function of the number of rings. For the HE11 and TE02 modes the loss at the least-loss wavelength of the TE01 mode is also shown. The ratio of the loss of the lowest-loss (TE01) and the second-lowest-loss modes is also shown.

Fig. 4
Fig. 4

Left, the two-dimensional lattice that forms asymptotically at increasing distance from the core with the wave vector restricted to the xz plane (κ and β are the x and z components, respectively). Right, unit cell and Brillouin zones with different y offsets α between adjacent layers in the x direction. The restricted wave vector means that only the path indicated (e.g., from Γ to X for α=0) needs to be considered, rather than the boundary of the irreducible Brillouin zone (shaded). Changes to the value of α were found to make negligible differences in the positions of the bands for the path considered.

Fig. 5
Fig. 5

Left, TE-polarization band diagram (gaps are indicated in white) with the position of the TE01 mode shown; the least-loss point is marked. Right, band diagram for TM polarization with the HE11 mode shown. The closing of the band near the light line suppresses the TM and HE modes.

Metrics