Abstract

We report a study of the temperature dependence of the Brillouin gain and loss for three different kinds of commercial polarization-maintaining fibers for the first time to our knowledge. The Brillouin frequency differences between the fast and slow axes are independent of the temperature, varying between 2.9 and 4.3 MHz. Using 2-ns pulses (equivalent to a spatial resolution of 20 cm), we find that the temperature coefficients for the relative Brillouin power at a wavelength of 1310 nm are 0.26%/C° (panda fiber), 0.23%/C° (bow-tie fiber), and 0.04%/C° (tiger fiber); the temperature coefficients for the Brillouin frequency are 1.37 MHz/C° (panda), 1.66 MHz/C° (tiger), and 2.30 MHz/C° (bow-tie). The temperature coefficients for the Brillouin gain bandwidth are 0.15 MHz/C° (panda), 0.20 MHz/C° (bow-tie), and 0.22 MHz/C° (tiger).

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, D. J. Webb, and D. A. Jackson, Opt. Lett. 19, 141 (1994).
    [CrossRef]
  2. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, IEEE Photon. Technol. Lett. 9, 979 (1997).
    [CrossRef]
  3. J. Smith, A. Brown, M. DeMerchant, and X. Bao, Appl. Opt. 38, 5372 (1999).
    [CrossRef]
  4. H. H. Kee, G. P. Lees, and T. P. Newson, Opt. Lett. 25, 695 (2000).
    [CrossRef]
  5. J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
    [CrossRef]

2000 (1)

1999 (1)

1997 (1)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

1994 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Bao, X.

Brown, A.

DeMerchant, M.

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

Jackson, D. A.

Kee, H. H.

Lees, G. P.

Newson, T. P.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

Roger, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Smith, J.

Webb, D. J.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Roger, IEEE Photon. Technol. Lett. 9, 979 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup for the Brillouin scattering measurement of PM fibers. P1, P2, polarization controllers; PBS1, PBS2, polarizing beam splitters; C1, C2, connectors.

Fig. 2
Fig. 2

Temperature dependence of the Brillouin frequency shift of panda, bow-tie, and tiger PM fibers at the fast axis.

Fig. 3
Fig. 3

Temperature dependence of the Brillouin bandwidth in PM fibers (slow axis for panda and fast axis for bow-tie and tiger).

Fig. 4
Fig. 4

Temperature dependence of the Brillouin power (the maximum power at 80 °C is normalized to 1) for the three PM fibers (slow axis for panda and fast axis for bow-tie and tiger).

Fig. 5
Fig. 5

Temperature dependence for the Brillouin frequency shift of the bow-tie fiber between the fast axis and the slow axis.

Fig. 6
Fig. 6

Comparison of time trace (at 20 °C) flatness for the three PM fibers (bow-tie is upshifted 214 MHz for comparison).

Tables (2)

Tables Icon

Table 1 Temperature Dependence of the Frequency ΔνB, Power Ratio, and Bandwidth

Tables Icon

Table 2 Standard Error (StdErr) of Measurement -4080 C° and the Equivalent Temperature Uncertainty ΔT for PM Fibers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔνBsf=2νaλnslow-nfast,

Metrics