We propose a new method for measuring the phase and the amplitude of a short laser pulse that is based on shearing interferometry in the spectral domain combined with time gating. The method has several features in common with spectral interferometry for direct electric-field reconstruction, in particular, fast and direct reconstruction of the phase. Accurate measurement of the phase added to an 80-fs pulse by a block of F4 glass demonstrates the technique.

© 2003 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
  2. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
  3. K. C. Chu, J. P. Heritage, R. S. Grant, K. X. Liu, A. Dienes, W. E. White, and A. Sullivan, Opt. Lett. 20, 904 (1995).
    [Crossref] [PubMed]
  4. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, Opt. Express 7, 342 (2000), http://www.opticsexpress.org .
    [Crossref] [PubMed]
  5. C. Dorrer, P. Londero, and I. A. Walmsley, Opt. Lett. 26, 1510 (2001).
  6. C. Dorrer, B. De Beauvoir, C. Le Blanc, S. Ranc, J.-P. Rousseau, P. Rousseau, J. P. Chambaret, and F. Salin, Opt. Lett. 24, 1644 (1999).
  7. M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1972).
  8. C. Dorrer, E. M. Korik, and I. A. Walmsley, Opt. Lett. 27, 548 (2002).

2002 (1)

2001 (1)

2000 (1)

1999 (1)

1998 (1)

1995 (1)

1993 (1)

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).

1972 (1)

Chambaret, J. P.

Chu, K. C.

De Beauvoir, B.

Dienes, A.

Dorrer, C.

Grant, R. S.

Gu, X.

Heritage, J. P.

Iaconis, C.

Ina, H.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).

Kimmel, M.

Kobayashi, S.

Korik, E. M.

Le Blanc, C.

Liu, K. X.

Londero, P.

O’Shea, P.

Ranc, S.

Rousseau, J.-P.

Rousseau, P.

Salin, F.

Sullivan, A.

Takeda, M.

Trebino, R.

Walmsley, I. A.

White, W. E.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (5)

Fig. 1
Fig. 1

SPIRIT is based on the transverse shearing of spatially dispersed spectral components of a pulse.

Fig. 2
Fig. 2

Top, schematic drawing of the space–time intensity modulation that results from the shearing interferometry of a pulse spectrum in the case of a complex distorted phase profile. The spectral components are displayed along the x axis. Bottom, temporal gating permits a part of the pattern to be clipped so a slow detector array can record the spectral interference figure.

Fig. 3
Fig. 3

Experimental setup, showing one example of implementation of SPIRIT suited to the measurement of pulses at a standard repetition rate. M’s, mirrors; BS, BS, beam splitters; other abbreviations defined in text.

Fig. 4
Fig. 4

Example of spectral interference beats detected with 80-fs pulses at input by use of the setup of Fig. 3.

Fig. 5
Fig. 5

SPIRIT measurement of the spectral phase introduced in an 80-fs laser pulse by a block of F4 Schott glass. The theoretical phase profile is shown for comparison. The intensity distribution of the spectrum is also plotted.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.