Abstract

A simple reflow method for fabrication of refractive microlens arrays in inorganic–organic SiO2ZrO2 solgel glass is presented. To our knowledge, this is the first report that presents a simple reflow technique for transforming a negatively induced hybrid solgel material into desirable spherical microlenses. It is shown that the microlenses have excellent smooth surfaces and uniform dimensions. The reflow technique is considerably cheaper than use of a high-energy beam-sensitive gray-scale mask and is suitable for mass production.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, Appl. Opt. 27, 1281 (1998).
    [Crossref]
  2. L. Erdmann and D. Efferenn, Opt. Eng. 36, 1094 (1997).
    [Crossref]
  3. X.-C. Yuan, W. X. Yu, N. Q. Ngo, and W. C. Cheong, Opt. Express 10, 303 (2002), http://www.opticsexpress.org .
    [Crossref] [PubMed]
  4. R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, J. Sol-Gel Sci. Technol. 13, 509 (1998).
  5. R. R. A. Syms and A. S. Holmes, IEEE Photon. Technol. Lett. 5, 1077 (1993).
    [Crossref]
  6. K. Kintaka, J. Nishii, and N. Tohge, Appl. Opt. 39, 489 (2000).
    [Crossref]
  7. J. Neumann, K. S. Wieking, and D. Kip, Appl. Opt. 38, 5418 (1999).
    [Crossref]
  8. J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
    [Crossref]
  9. H. Eugene, Optics (Addison-Wesley, San Francisco, Calif., 2002), pp. 243–244.

2002 (1)

2000 (1)

1999 (1)

1998 (3)

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
[Crossref]

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, J. Sol-Gel Sci. Technol. 13, 509 (1998).

Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, Appl. Opt. 27, 1281 (1998).
[Crossref]

1997 (1)

L. Erdmann and D. Efferenn, Opt. Eng. 36, 1094 (1997).
[Crossref]

1993 (1)

R. R. A. Syms and A. S. Holmes, IEEE Photon. Technol. Lett. 5, 1077 (1993).
[Crossref]

Cheong, W. C.

Connell, G. A. N.

Efferenn, D.

L. Erdmann and D. Efferenn, Opt. Eng. 36, 1094 (1997).
[Crossref]

Erdmann, L.

L. Erdmann and D. Efferenn, Opt. Eng. 36, 1094 (1997).
[Crossref]

Eugene, H.

H. Eugene, Optics (Addison-Wesley, San Francisco, Calif., 2002), pp. 243–244.

Green, M.

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, J. Sol-Gel Sci. Technol. 13, 509 (1998).

Holmes, A. S.

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, J. Sol-Gel Sci. Technol. 13, 509 (1998).

R. R. A. Syms and A. S. Holmes, IEEE Photon. Technol. Lett. 5, 1077 (1993).
[Crossref]

Honkannen, S.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
[Crossref]

Huang, W.

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, J. Sol-Gel Sci. Technol. 13, 509 (1998).

Kintaka, K.

Kip, D.

Neumann, J.

Ngo, N. Q.

Nishii, J.

Nordman, N.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
[Crossref]

Nordman, O.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
[Crossref]

Peyghambarian, N.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
[Crossref]

Popovic, Z. D.

Rantala, J. T.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
[Crossref]

Schneider, V. M.

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, J. Sol-Gel Sci. Technol. 13, 509 (1998).

Sprague, R. A.

Syms, R. R. A.

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, J. Sol-Gel Sci. Technol. 13, 509 (1998).

R. R. A. Syms and A. S. Holmes, IEEE Photon. Technol. Lett. 5, 1077 (1993).
[Crossref]

Tohge, N.

Vahakangas, J.

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
[Crossref]

Wieking, K. S.

Yu, W. X.

Yuan, X.-C.

Appl. Opt. (3)

Electron. Lett. (1)

J. T. Rantala, N. Nordman, O. Nordman, J. Vahakangas, S. Honkannen, and N. Peyghambarian, Electron. Lett. 34, 455 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. R. A. Syms and A. S. Holmes, IEEE Photon. Technol. Lett. 5, 1077 (1993).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

R. R. A. Syms, A. S. Holmes, W. Huang, V. M. Schneider, and M. Green, J. Sol-Gel Sci. Technol. 13, 509 (1998).

Opt. Eng. (1)

L. Erdmann and D. Efferenn, Opt. Eng. 36, 1094 (1997).
[Crossref]

Opt. Express (1)

Other (1)

H. Eugene, Optics (Addison-Wesley, San Francisco, Calif., 2002), pp. 243–244.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic showing the fabrication steps and the mask layout of a 512×512 spherical microlens array by the reflow technique.

Fig. 2
Fig. 2

Scanning electron microscope photograph (300×) of a 512×512 spherical microlens array in solgel.

Fig. 3
Fig. 3

Measured surface profile of the spherical microlens arrays. The units on the two axes are micrometers.

Fig. 4
Fig. 4

Distribution of light on the focal plane of the spherical microlens array. The units are micrometers, and the grid scale is 20 µm×20 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η=4h23R-h3HD2.
R=D2+4h28h.
f=Rn-1,
F#=f/D,

Metrics