Abstract

We report a mode-locked ytterbium fiber laser that generates femtosecond pulses with energies as large as 2.2 nJ. This represents a 20-fold improvement in pulse energy compared with that of previously reported femtosecond Yb fiber lasers. The laser produces pulses as short as 52 fs, which are to our knowledge the shortest pulses to date from a Yb fiber laser. The laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, IEEE J. Quantum Electron. 28, 720 (1992).
    [CrossRef]
  2. K. Tamura, J. Jacobson, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 18, 1080 (1993).
    [CrossRef]
  3. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, Opt. Lett. 22, 316 (1997).
    [CrossRef] [PubMed]
  4. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spuhler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, Opt. Lett. 27, 291 (2002).
    [CrossRef]
  5. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, Opt. Lett. 18, 220 (1993).
    [CrossRef]
  6. K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen, Opt. Lett. 19, 46 (1994).
    [CrossRef] [PubMed]
  7. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, Opt. Lett. 24, 1774 (1999).
    [CrossRef]

2002 (1)

1999 (1)

1997 (1)

1994 (1)

1993 (2)

1992 (1)

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, IEEE J. Quantum Electron. 28, 720 (1992).
[CrossRef]

Cautaerts, V.

Doerr, C. R.

Fermann, M. E.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, IEEE J. Quantum Electron. 28, 720 (1992).
[CrossRef]

Fry, A. R.

Fujimoto, J. G.

Haberl, F.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, IEEE J. Quantum Electron. 28, 720 (1992).
[CrossRef]

Hanna, D. C.

Haus, H. A.

Hofer, M.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, IEEE J. Quantum Electron. 28, 720 (1992).
[CrossRef]

Ippen, E. P.

Jacobson, J.

Jasapara, J.

Keller, U.

Lefort, L.

Nelson, L. E.

Nicholson, J. W.

Ober, M. H.

M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann, IEEE J. Quantum Electron. 28, 720 (1992).
[CrossRef]

Omenetto, F. G.

Paschotta, R.

Price, J. H. V.

Richardson, D. J.

Rudolph, W.

Spuhler, G. J.

Tamura, K.

Taylor, A. J.

Weston, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: HWP, half-wave plate; QWPs, quarter-wave plates; PBS, polarizing beam splitter; PC, polarization controller; WDM, wavelength-division multiplexer.

Fig. 2
Fig. 2

Spectra (note the logarithmic scale) and interferometric autocorrelations produced by the laser with anomalous GVD. The net dispersions are -0.067, -0.038, and -0.021 ps2 from top to bottom.

Fig. 3
Fig. 3

Spectra and interferometric autocorrelations produced by the laser with gain in the center of the fiber section. The net dispersions are -0.008, +0.004, and +0.016 ps2 from top to bottom.

Fig. 4
Fig. 4

Pulses after chirp compensation. (a) Pulse duration and time–bandwidth product as a function of net GVD. A Gaussian pulse shape is assumed, except for the points at -0.067 and -0.038 ps2, for which a sech shape was assumed. Inset, autocorrelation of a 130-fs pulse without secondary structure (see text). (b) Phase (dashed curve) and temporal intensity (solid curve) traces of the shortest pulses generated by the YB fiber laser. Inset, autocorrelation of the same pulse.

Metrics