Abstract

We propose a new method for characterizing the local parameters of fiber Bragg gratings. This method combines measurement of the complex impulse response by optical low-coherence reflectometry and reconstruction of the complex coupling coefficient by layer peeling. Application of the method to a nonhomogeneous grating shows that the local coupling coefficient can be precisely determined with an axial resolution below 20 µm and a maximum error of less than 5% for amplitude and phase, respectively.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, Fiber Bragg Gratings (Academic, New York, 1999).
  2. G. Meltz, W. W. Morey, and W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [Crossref] [PubMed]
  3. P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565 (1993).
    [Crossref]
  4. S. D. Dyer and K. B. Rochford, Electron. Lett. 35, 1485 (1999).
    [Crossref]
  5. F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
    [Crossref]
  6. R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
    [Crossref]
  7. J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
    [Crossref]
  8. J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. dissertation, (Norwegian University of Science and Technology, Trondheim, Norway, 2000), Chap. 2.
  9. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [Crossref]
  10. J. Skaar and R. Feced, J. Opt. Soc. Am. A 19, 2229 (2002).
    [Crossref]

2002 (1)

2001 (1)

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[Crossref]

1999 (2)

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[Crossref]

S. D. Dyer and K. B. Rochford, Electron. Lett. 35, 1485 (1999).
[Crossref]

1997 (2)

F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
[Crossref]

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

1993 (1)

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565 (1993).
[Crossref]

1989 (1)

Dyer, S. D.

S. D. Dyer and K. B. Rochford, Electron. Lett. 35, 1485 (1999).
[Crossref]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[Crossref]

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

Feced, R.

J. Skaar and R. Feced, J. Opt. Soc. Am. A 19, 2229 (2002).
[Crossref]

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[Crossref]

Fonjallaz, P. Y.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565 (1993).
[Crossref]

Gianotti, R.

F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
[Crossref]

Gilgen, H. H.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565 (1993).
[Crossref]

Glenn, W. H.

Haas, A.

F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
[Crossref]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, New York, 1999).

Lambelet, P.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565 (1993).
[Crossref]

Limberger, H. G.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565 (1993).
[Crossref]

Lindgren, F.

F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
[Crossref]

Meltz, G.

Morey, W. W.

Muriel, M. A.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[Crossref]

Nussberger, N.

F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
[Crossref]

Rochford, K. B.

S. D. Dyer and K. B. Rochford, Electron. Lett. 35, 1485 (1999).
[Crossref]

Salathé, R. P.

F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
[Crossref]

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565 (1993).
[Crossref]

Schmatz, M. L.

F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
[Crossref]

Skaar, J.

J. Skaar and R. Feced, J. Opt. Soc. Am. A 19, 2229 (2002).
[Crossref]

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[Crossref]

J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. dissertation, (Norwegian University of Science and Technology, Trondheim, Norway, 2000), Chap. 2.

Wälti, R.

F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
[Crossref]

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[Crossref]

Zervas, M. N.

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[Crossref]

Zimmer, C.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565 (1993).
[Crossref]

Electron. Lett. (1)

S. D. Dyer and K. B. Rochford, Electron. Lett. 35, 1485 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Feced, M. N. Zervas, and M. A. Muriel, IEEE J. Quantum Electron. 35, 1105 (1999).
[Crossref]

J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (2)

F. Lindgren, R. Gianotti, R. Wälti, R. P. Salathé, A. Haas, N. Nussberger, and M. L. Schmatz, IEEE Photon. Technol. Lett. 9, 1613 (1997).
[Crossref]

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565 (1993).
[Crossref]

J. Lightwave Technol. (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Other (2)

R. Kashyap, Fiber Bragg Gratings (Academic, New York, 1999).

J. Skaar, “Synthesis and characterization of fiber Bragg gratings,” Ph.D. dissertation, (Norwegian University of Science and Technology, Trondheim, Norway, 2000), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental OLCR: SLD, broadband light source; TL, tunable laser; OpS, optical switch; C, circulator; CPL, 3-dB coupler; PZT, piezoelectric plate; L, lens; MIR, mirror; TS, translation stage; POLA, polarization controller; FBG, test grating; IMF, index-matching fluid; A, attenuator; D’s, detectors; VD, voltage-difference module; L-I, lock-in amplifier.

Fig. 2
Fig. 2

(a) FBG parameters, (b) OLCR amplitude, and (c) phase difference between the OLCR phase and the reference laser phase at λB.

Fig. 3
Fig. 3

Coupling coefficient’s (a) amplitude and (b) phase; (c) expanded view of coupling coefficient’s amplitude; (d) differences between reconstructions from the two sides.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

nz-n0=Δnaczcos2πz/Λ+θz+Δndcz,
qz=ηπΔndczλ×expiθz-2ηk0zΔndczdz+π/2,
ρj=1Mm=1Mrjm=-tanhqjΔqj*qj,
rj+1m=rjm-ρj1-ρj*rjmexp-iδ2Δ,

Metrics