Abstract

A semiclassical implementation of the finite-difference time-domain method is used to simulate coherent linear propagation of ultrashort mid-infrared pulses through optically dense samples of isotropically diluted liquid water. Bloch equations for the density matrix are used as a simple model of the O—H oscillator relaxation, and the algorithm is extended to other response functions. Sensitivity of the field to the form of the response function is demonstrated, and the results are compared with experimentally determined electric fields in the same media [Rev. Sci. Instrum. 73, 2227 (2002)].

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of mode-locked surface-emitting lasers through a finite-difference time-domain algorithm

Mayank Bahl, Hongling Rao, Nicolae C. Panoiu, and Richard M. Osgood
Opt. Lett. 29(14) 1689-1691 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription