Abstract

A theoretical study of supercontinuum generation in photonic crystal fiber and its application to pulse compression is presented. The evolution of the spectrum can be divided into three stages: initial broadening below a certain threshold propagation distance, dramatic broadening to a supercontinuum at a threshold distance, and, finally, saturation of the spectral width on propagation. It is found that the group delay and group-delay dispersion of the supercontinum are sensitive to the input pulse peak power after further propagation at the third stage. Fluctuations from the input pulse are amplified and translated into fluctuations and time shift of the compressed pulses. There exists an optimum compressed distance at which compressed pulses with negligible fluctuation and time shift can be obtained.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, erratum of Ref. 1, Opt. Lett. 22, 484 (1997).
    [CrossRef] [PubMed]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, Opt. Lett. 26, 608 (2001).
    [CrossRef]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  6. A. L. Gaeta, Opt. Lett. 27, 924 (2002).
    [CrossRef]
  7. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, and R. Trebino, Opt. Lett. 27, 1174 (2002).
    [CrossRef]
  8. K. Mori, H. Takara, and S. Kawanishi, J. Opt. Soc. Am. B 18, 1780 (2001).
    [CrossRef]
  9. P. L. Francois, J. Opt. Soc. Am. B 8, 276 (1991).
    [CrossRef]
  10. G. P. Agrawal, in Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  11. J. C. Knight and P. St. J. Russell, Optoelectronics Group, Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK (personal communication, January, 2001).
  12. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. St. J. Russell, J. Opt. Soc. Am. B 19, 2148 (2002).
    [CrossRef]
  13. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 18, 50 (2000).
    [CrossRef]
  14. S. Coen, A. H. L. Chau, R. Leonhardt, and J. D. Harvey, J. Opt. Soc. Am. B 19, 753 (2002).
    [CrossRef]
  15. V. Husakou, V. P. Kalosha, and J. Herrmann, Opt. Lett. 26, 1022 (2001).
    [CrossRef]

2002 (4)

2001 (3)

2000 (3)

1997 (1)

1996 (1)

1991 (1)

Agrawal, G. P.

G. P. Agrawal, in Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Atkin, D. M.

Bennett, P. J.

Birks, T. A.

Broderick, N. G. R.

Chau, A. H. L.

Chudoba, C.

Coen, S.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Francois, P. L.

Fujimoto, J. G.

Gaeta, A. L.

Ghanta, R. K.

Gu, X.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Hartl, I.

Harvey, J. D.

Herrmann, J.

Husakou, V.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Kalosha, V. P.

Kawanishi, S.

Kimmel, M.

Knight, J. C.

Ko, T. H.

Leonhardt, R.

Li, X. D.

Man, T.-P. M.

Monro, T. M.

Mori, K.

O’Shea, P.

Ortigosa-Blanch, A.

Ranka, J. K.

Richardson, D. J.

Russell, P. St. J.

Shreenath, A. P.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Takara, H.

Trebino, R.

Wadsworth, W. J.

Windeler, R. S.

Xu, L.

Zeek, E.

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

Opt. Lett. (7)

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, in Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

J. C. Knight and P. St. J. Russell, Optoelectronics Group, Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK (personal communication, January, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Fiber dispersion and effective core area versus wavelength, (b) SC generated after propagation for 5 cm (top spectrum) and 45 cm (bottom spectrum).

Fig. 2
Fig. 2

(a) Evolution of the 30-dB spectrum width along the propagation distance. (b) Threshold distance and saturation distance versus the peak power of the input pulse.

Fig. 3
Fig. 3

GD and GDD for 45-cm propagation distance with different input peak power: (a), (b) 8 kW and (c), (d) peak power of 8.016 kW.

Fig. 4
Fig. 4

(a) Calculated pulse compression for the ideal case (8 kW) and the nonideal case (8.016 kW). (b) Corresponding time shift and fluctuation versus propagation distance. (The time shift and fluctuation of the peak power have been normalized to the duration and the peak power of the compressed pulse with ideal compensation.) (c) Duration of compressed pulses versus distance for an ideal compressor and a LCSLM with 8-kW input. (d) Compressed single-cycle pulses obtained from SC with 80-kW peak power for the input pulse that propagates 1.2 cm along PCF. The duration is 2.4 fs for the ideal compressor and 2.54 fs for the LCSLM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SΩ,zz=-i[βω0+Ω,z-(βω0,z-Ωβ1ω0,z-iαω0+Ω,z]SΩ,z-iγP01+Ωω0FST,zST,z2+F-1RΩFST,z2.

Metrics