Abstract

As much as 3 W of average power at 1064 nm from a diode-pumped Nd:YAG laser, Q switched at 4 kHz, was used to pump an external-resonator, crystalline BaNO32 Raman laser generating a maximum of 1.3-W output at the first Stokes wavelength of 1197 nm. The slope efficiency was 63% with respect to the fundamental power incident on the BaNO32 crystal. A reduction in the beam quality of the Stokes output from M21.4 at lower Stokes powers to M23.4 at higher powers is attributed to thermal loading of the Raman-active crystal.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Cerny and H. Jelinkova, Opt. Lett. 27, 360 (2002).
    [CrossRef]
  2. H. M. Pask and J. A. Piper, IEEE J. Quantum Electron. 36, 949 (2000).
    [CrossRef]
  3. C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
    [CrossRef]
  4. P. G. Zverev, T. T. Basiev, M. E. Doroshenko, and V. V. Osiko, in Advanced Solid State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 348.
  5. C. B. Rawle, I. McKinnie, T. V. V. Ter-Mikirtychev, and W. J. Sandle, in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 52.
  6. P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, Opt. Mater. 11, 335 (1999).
    [CrossRef]
  7. J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 575.
  8. J. Richards and A. McInnes, Opt. Lett. 20, 371 (1995).
    [CrossRef]
  9. P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater. 11, 315 (1999).
    [CrossRef]
  10. P. G. Zverev, General Physics Institute, 38 Vasilov Street, Moscow 117942, Russia (personal communication, 2000): The sign of the thermo-optic coefficient published in Ref. 9 is incorrect. The thermal-optic coefficient is negative.
  11. H. M. Pask, J. L. Blows, J. A. Piper, M. Revermann, and T. Omatsu, in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 441.

2002 (1)

2000 (1)

H. M. Pask and J. A. Piper, IEEE J. Quantum Electron. 36, 949 (2000).
[CrossRef]

1999 (2)

P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, Opt. Mater. 11, 335 (1999).
[CrossRef]

P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater. 11, 315 (1999).
[CrossRef]

1997 (1)

C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
[CrossRef]

1995 (1)

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 575.

Basiev, T. T.

P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater. 11, 315 (1999).
[CrossRef]

P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, Opt. Mater. 11, 335 (1999).
[CrossRef]

P. G. Zverev, T. T. Basiev, M. E. Doroshenko, and V. V. Osiko, in Advanced Solid State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 348.

Blows, J. L.

H. M. Pask, J. L. Blows, J. A. Piper, M. Revermann, and T. Omatsu, in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 441.

Cerny, P.

Chyba, T. H.

C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
[CrossRef]

Doroshenko, M. E.

P. G. Zverev, T. T. Basiev, M. E. Doroshenko, and V. V. Osiko, in Advanced Solid State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 348.

He, C.

C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
[CrossRef]

Jelinkova, H.

Kulkov, A. M.

P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater. 11, 315 (1999).
[CrossRef]

McInnes, A.

McKinnie, I.

C. B. Rawle, I. McKinnie, T. V. V. Ter-Mikirtychev, and W. J. Sandle, in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 52.

Murray, J. T.

J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 575.

Omatsu, T.

H. M. Pask, J. L. Blows, J. A. Piper, M. Revermann, and T. Omatsu, in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 441.

Osiko, V. V.

P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater. 11, 315 (1999).
[CrossRef]

P. G. Zverev, T. T. Basiev, M. E. Doroshenko, and V. V. Osiko, in Advanced Solid State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 348.

Pask, H. M.

H. M. Pask and J. A. Piper, IEEE J. Quantum Electron. 36, 949 (2000).
[CrossRef]

H. M. Pask, J. L. Blows, J. A. Piper, M. Revermann, and T. Omatsu, in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 441.

Piper, J. A.

H. M. Pask and J. A. Piper, IEEE J. Quantum Electron. 36, 949 (2000).
[CrossRef]

H. M. Pask, J. L. Blows, J. A. Piper, M. Revermann, and T. Omatsu, in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 441.

Powell, R. C.

J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 575.

Prokhorov, A. M.

P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, Opt. Mater. 11, 335 (1999).
[CrossRef]

Rawle, C. B.

C. B. Rawle, I. McKinnie, T. V. V. Ter-Mikirtychev, and W. J. Sandle, in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 52.

Revermann, M.

H. M. Pask, J. L. Blows, J. A. Piper, M. Revermann, and T. Omatsu, in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 441.

Richards, J.

Sandle, W. J.

C. B. Rawle, I. McKinnie, T. V. V. Ter-Mikirtychev, and W. J. Sandle, in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 52.

Ter-Mikirtychev, T. V. V.

C. B. Rawle, I. McKinnie, T. V. V. Ter-Mikirtychev, and W. J. Sandle, in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 52.

Voitsekhovskii, V. N.

P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater. 11, 315 (1999).
[CrossRef]

Yakobson, V. E.

P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater. 11, 315 (1999).
[CrossRef]

Zverev, P. G.

P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater. 11, 315 (1999).
[CrossRef]

P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, Opt. Mater. 11, 335 (1999).
[CrossRef]

P. G. Zverev, T. T. Basiev, M. E. Doroshenko, and V. V. Osiko, in Advanced Solid State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 348.

P. G. Zverev, General Physics Institute, 38 Vasilov Street, Moscow 117942, Russia (personal communication, 2000): The sign of the thermo-optic coefficient published in Ref. 9 is incorrect. The thermal-optic coefficient is negative.

IEEE J. Quantum Electron. (1)

H. M. Pask and J. A. Piper, IEEE J. Quantum Electron. 36, 949 (2000).
[CrossRef]

Opt. Commun. (1)

C. He and T. H. Chyba, Opt. Commun. 135, 273 (1997).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (2)

P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, Opt. Mater. 11, 335 (1999).
[CrossRef]

P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, and V. E. Yakobson, Opt. Mater. 11, 315 (1999).
[CrossRef]

Other (5)

P. G. Zverev, General Physics Institute, 38 Vasilov Street, Moscow 117942, Russia (personal communication, 2000): The sign of the thermo-optic coefficient published in Ref. 9 is incorrect. The thermal-optic coefficient is negative.

H. M. Pask, J. L. Blows, J. A. Piper, M. Revermann, and T. Omatsu, in Advanced Solid State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 441.

J. T. Murray, W. L. Austin, and R. C. Powell, in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 575.

P. G. Zverev, T. T. Basiev, M. E. Doroshenko, and V. V. Osiko, in Advanced Solid State Lasers, Vol. 34 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 348.

C. B. Rawle, I. McKinnie, T. V. V. Ter-Mikirtychev, and W. J. Sandle, in Advanced Solid-State Lasers, C. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. 52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement, showing the CPFS fundamental laser, coupling optics, external (XTAL) Raman resonator, and frequency-doubling stage. R, reflecting; T, transmitting; other abbreviations defined in text.

Fig. 2
Fig. 2

Output power at 1197 nm from the external Raman resonator as a function of average fundamental power incident upon the Raman crystal. Pulse repetition rate, 4 kHz.

Fig. 3
Fig. 3

Oscilloscope traces showing the incident pump pulse at 1064 nm, the pulse at 1197 nm from the Raman resonator, and the unconverted 1064-nm pulse (rejected by the polarizer. [Note that the fundamental pulse duration 12 ns is longer than that for which the highest frequency conversion was achieved.]

Fig. 4
Fig. 4

Beam profiles in the near field (top row) and the far field (bottom row) for the 1197-nm Raman laser output at different output powers: 0.63 W (left), 1.05 W (center), and 1.32 W (right).

Metrics