Abstract

Back-focal-plane interferometry is a method capable of determining the three-dimensional position of a particle with high precision (<3 nm) at high sampling rates (1 MHz). We investigated theoretically the performance of such a system for dielectric spheres with diameters D=0.533 µm and for metallic spheres with D300 nm. Good sensitivity and linearity were achieved for a detection angular aperture sinα of no more than 0.5. A value of sinα>0.7 should be used only for dielectric spheres with diameters approximately equal to the laser wavelength. Harmonic optical traps can be calibrated by measurement of the thermal motion of the sphere. We performed Brownian dynamics simulations and subsequent thermal noise analyses to prove that the wrong sinα incorrectly suggests an increased and nonharmonic axial trapping potential.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription