Abstract

Two-wave mixing in a dynamic holographic film acts as the adaptive beam combiner in a short-coherence interferometer that performs optical coherence-domain reflectometry (OCDR) through turbid media. This approach combines the high spatial resolution and sensitivity of coherence-domain reflectometry with photorefractive quantum-well-based adaptive homodyne detection. A depth resolution of 28 µm and penetration through 16 mean free paths in a turbid medium have been obtained in this adaptive OCDR application.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
    [CrossRef]
  2. D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, J. Opt. Soc. Am. B 18, 1 (2001).
  3. R. Jones, N. P. Barry, S. C. W. Hyde, P. M. W. French, K. W. Kwolek, D. D. Nolte, and M. R. Melloch, Opt. Lett. 23, 103 (1998).
    [CrossRef]
  4. F. M. Davidson and L. Boutsikaris, Opt. Eng. 29, 369 (1990).
    [CrossRef]
  5. I. Rossomakhin and S. Stepanov, Opt. Commun. 86, 199 (1991).
    [CrossRef]
  6. R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
    [CrossRef]
  7. J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, Opt. Lett. 16, 1442 (1991).
    [CrossRef] [PubMed]
  8. S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, Appl. Phys. B 68, 963 (1999).
    [CrossRef]
  9. M. Dinu, K. Nakagawa, M. R. Melloch, A. M. Weiner, and D. D. Nolte, J. Opt. Soc. Am. B 17, 1313 (2000).
    [CrossRef]
  10. R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, J. Opt. Soc. Am. B 11, 1038 (1994).
    [CrossRef]

2001 (1)

2000 (1)

1999 (2)

J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, Appl. Phys. B 68, 963 (1999).
[CrossRef]

1998 (1)

1994 (1)

1991 (3)

J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, Opt. Lett. 16, 1442 (1991).
[CrossRef] [PubMed]

I. Rossomakhin and S. Stepanov, Opt. Commun. 86, 199 (1991).
[CrossRef]

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

1990 (1)

F. M. Davidson and L. Boutsikaris, Opt. Eng. 29, 369 (1990).
[CrossRef]

Balasubramanian, S.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, Appl. Phys. B 68, 963 (1999).
[CrossRef]

Barry, N. P.

Boutsikaris, L.

F. M. Davidson and L. Boutsikaris, Opt. Eng. 29, 369 (1990).
[CrossRef]

Brubaker, R. M.

Cronin-Golomb, M.

Cubel, T.

Davidson, F. M.

F. M. Davidson and L. Boutsikaris, Opt. Eng. 29, 369 (1990).
[CrossRef]

Ding, Y.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, Appl. Phys. B 68, 963 (1999).
[CrossRef]

Dinu, M.

French, P. M. W.

Harmon, E. S.

Hyde, S. C. W.

Ing, R. K.

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

Jones, R.

Khoury, J.

Kwolek, K. W.

Lahiri, I.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, Appl. Phys. B 68, 963 (1999).
[CrossRef]

Melloch, M. R.

Monchalin, J.-P.

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

Nakagawa, K.

Nolte, D. D.

Pyrak-Nolte, L. J.

Rossomakhin, I.

I. Rossomakhin and S. Stepanov, Opt. Commun. 86, 199 (1991).
[CrossRef]

Ryan, V.

Schmitt, J. M.

J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
[CrossRef]

Stepanov, S.

I. Rossomakhin and S. Stepanov, Opt. Commun. 86, 199 (1991).
[CrossRef]

Wang, Q. N.

Weiner, A. M.

Woods, C.

Appl. Phys. B (1)

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, Appl. Phys. B 68, 963 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

R. K. Ing and J.-P. Monchalin, Appl. Phys. Lett. 59, 3233 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, IEEE J. Sel. Top. Quantum Electron. 5, 1205 (1999).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

I. Rossomakhin and S. Stepanov, Opt. Commun. 86, 199 (1991).
[CrossRef]

Opt. Eng. (1)

F. M. Davidson and L. Boutsikaris, Opt. Eng. 29, 369 (1990).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental configuration of the adaptive OCDR system. The system is based on a Mach–Zehnder interferometer with a 100-fs mode-locked Ti:saphhire laser with a 100-MHz pulse repetition rate. A 5-MHz phase modulator and a piezo transducer are added to the reference beam as primary and secondary phase modulation sources. The signal beam is sent through a 1-cm-deep turbid medium twice by the mirror at the end of signal arm. APD, avalanche photodiode; V, electric field supply. Inset, homodyne signal versus wavelength of a PRQW at a field of 7.5 kV/cm for both polarities at small phase modulation ϕ00.01π.

Fig. 2
Fig. 2

Absolute homodyne signal δIs and relative homodyne signal δIs/Is for constant reference beam power. The beam intensity ratio β at MFPs 0 is 0.05.

Fig. 3
Fig. 3

Homodyne signal depth scans from 0 to 16.4 MFPs. Data for 0–9.8 MFPs were measured with 200-µW incident power, and those for 9.8–13 MFPs were measured with 200-mW incident power. The laser spectrum bandwidth was 12 nm, with a cross-correlation peak of 28-µm width at half-maximum.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ssω,L;t=exp-αωLSs+2SsSrηω1/2×mτcosϕp+ψω+ω-ω0τ+ϕt,
mτ=mτπω0π/ωcosϕ0 sinΩtdt=mτJ0ϕ0,
δPs=1.28SsSr exp-αLmτηωBω
SN=3.28 exp-αLPrPr+Psηω0SNconv,

Metrics