Abstract

We show analytically how periodic spinning affects the polarization mode dispersion of a fiber in three different practical regimes that are determined by the values of three length scales: the beat length, the birefringence correlation length, and the spin period. We determine in which limits the spin is effective in reducing the mean differential group delay.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
    [CrossRef]
  2. X. Chen, M.-J. Li, and D. A. Nolan, Opt. Lett. 27, 294 (2002).
    [CrossRef]
  3. A. Galtarossa, P. Griggio, A. Pizzinat, and L. Palmieri, Opt. Lett. 27, 692 (2002).
    [CrossRef]
  4. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]
  5. A. Galtarossa and L. Palmieri, in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper WA4.
  6. J. Kevorkian and J. D. Cole, Pertrubation Methods in Applied Mathematics (Springer-Verlag, New York, 1981).
    [CrossRef]
  7. B. Øksendal, Stochastic Differential Equations (Springer-Verlag, Berlin, 2000).
  8. P. K. A. Wai, W. L. Kath, C. R. Menyuk, and J. W. Zhang, J. Opt. Soc. Am. B 14, 2967 (1997).
    [CrossRef]

2002 (2)

2001 (1)

1997 (1)

1996 (1)

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Chen, X.

Cole, J. D.

J. Kevorkian and J. D. Cole, Pertrubation Methods in Applied Mathematics (Springer-Verlag, New York, 1981).
[CrossRef]

Galtarossa, A.

A. Galtarossa, P. Griggio, A. Pizzinat, and L. Palmieri, Opt. Lett. 27, 692 (2002).
[CrossRef]

A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
[CrossRef]

A. Galtarossa and L. Palmieri, in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper WA4.

Griggio, P.

Kath, W. L.

Kevorkian, J.

J. Kevorkian and J. D. Cole, Pertrubation Methods in Applied Mathematics (Springer-Verlag, New York, 1981).
[CrossRef]

Li, M.-J.

Menyuk, C. R.

Nolan, D. A.

Øksendal, B.

B. Øksendal, Stochastic Differential Equations (Springer-Verlag, Berlin, 2000).

Palmieri, L.

A. Galtarossa, P. Griggio, A. Pizzinat, and L. Palmieri, Opt. Lett. 27, 692 (2002).
[CrossRef]

A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
[CrossRef]

A. Galtarossa and L. Palmieri, in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper WA4.

Pizzinat, A.

Wai, P. K. A.

Zhang, J. W.

J. Lightwave Technol. (2)

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

A. Galtarossa, L. Palmieri, and A. Pizzinat, J. Lightwave Technol. 19, 1502 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (3)

A. Galtarossa and L. Palmieri, in Optical Fiber Communication, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper WA4.

J. Kevorkian and J. D. Cole, Pertrubation Methods in Applied Mathematics (Springer-Verlag, New York, 1981).
[CrossRef]

B. Øksendal, Stochastic Differential Equations (Springer-Verlag, Berlin, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Evolution of the relative error of the mean-square DGD made with relation (10) instead of the complete solution of Eqs. (2) as a function of spin amplitude, in the limit of short correlation length. Solid curve, LB=24 m, p=18 m, and LF=0.5 m. Dashed curve, LB=20 m, p=15 m, and LF=0.5 m. Dashed–dotted curve, LB=15 m, p=14 m, and LF=0.5 m.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

dΔτ2zdz=2bωΩ1z,
dΩ1dz=-2σ2Ω1+2αzΩ2+bω,dΩ2dz=-2αzΩ1-2σ2Ω2-bΩ3,dΩ3dz=bΩ2.
Ω1z=k1zsin2Az+k2zcos2Az,Ω2z=-k2zsin2Az+k1zcos2Az,
k1=bω0zsin2AzdzbωS,k2=bω0zcos2AzdzbωC,
Δτ2=bω2C2+S2=bω20zexpi2Azdz2.
dΩ10dz=-2σ2Ω10+bω,dΩ20dz=-2σ2Ω20,    dΩ30dz=0.
dΩ11dz=-2σ2Ω11+2αzΩ20,dΩ21dz=-2σ2Ω21-2αzΩ10-bΩ30,dΩ31dz=bΩ20.
Ω21=-A0bwσ24σ4+ν22σ2ν cosνz+ν2 sinνz-exp-2σ2z2σ2ν+4σ4+ν2sinνz.
Ω12-A02ν2bwσ24σ4+ν2σ4+ν2σ41+cos2νz+ν2+σ2ν sin2νz-2σ4+ν2exp-2σ2z,
Δτ2Δτun21-2A02ν24σ4+ν2,
y=1000cosbzsinbz0-sinbzcosbzΩ.
dy1dz=bω-2σ2y1+2αzy2cosbz-y3sinbz,dy2dz=-σ2y2-2αzy1cosbz-σ2y2cos2bz+y3sin2bz,dy3dz=-σ2y3+2αzy1sinbz+σ2y3cos2bz+y2sin2bz.
dy11dz=-2σ2y11,dy21dz=-σ2y21-2αzy10cosbz,dy31dz=-σ2y31+2αzy10sinbz.
dy12dz=-2σ2y12+2αzy21cosbz-y31sinbz.
y12-2A02ν2bω2σ2b21+cos2νz-2 exp-2σ2z.

Metrics