Abstract

Operation of a wideband, versatile optical spectrum analyzer for radio-frequency (RF) signals is demonstrated. The device is based on spectral hole burning (SHB). The demonstration features 2.3-GHz instantaneous bandwidth, 500-kHz resolution, and a 32-dB dynamic range. A true RF signal, transferred to the optical carrier with the help of a Mach–Zehnder modulator, is analyzed with optical carrier suppression and zooming capabilities. This is to the authors’ knowledge the largest instantaneous bandwidth ever demonstrated for a SHB-based processor in rare-earth-doped crystals.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Mossberg, Opt. Lett. 27, 77 (1982).
    [CrossRef]
  2. K. D. Merkel, W. R. Babbitt, K. E. Anderson, and K. H. Wagner, Opt. Lett. 24, 1386 (1999).
    [CrossRef]
  3. T. L. Harris, Y. Sun, W. R. Babbitt, R. L. Cone, J. A. Ritcey, and R. W. Equall, Opt. Lett. 25, 85 (2000).
    [CrossRef]
  4. L. Ménager, J.-L. Le Gouët, and I. Lorgeré, Opt. Lett. 26, 1397 (2001).
    [CrossRef]
  5. T. Böttger, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone, J. Lumin. 94–95, 565 (2001).
    [CrossRef]
  6. L. Ménager, I. Lorgeré, J.-L. Le Gouët, D. Dolfi, and J.-P. Huignard, Opt. Lett. 26, 1245 (2001).
    [CrossRef]
  7. L. Levin, Opt. Lett. 27, 237 (2002).
    [CrossRef]

2002

2001

2000

1999

1982

Anderson, K. E.

Babbitt, W. R.

Böttger, T.

T. Böttger, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone, J. Lumin. 94–95, 565 (2001).
[CrossRef]

Cone, R. L.

T. Böttger, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone, J. Lumin. 94–95, 565 (2001).
[CrossRef]

T. L. Harris, Y. Sun, W. R. Babbitt, R. L. Cone, J. A. Ritcey, and R. W. Equall, Opt. Lett. 25, 85 (2000).
[CrossRef]

Dolfi, D.

Equall, R. W.

Harris, T. L.

Huignard, J.-P.

Le Gouët, J.-L.

Levin, L.

Lorgeré, I.

Ménager, L.

Merkel, K. D.

Mossberg, T. W.

Pryde, G. J.

T. Böttger, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone, J. Lumin. 94–95, 565 (2001).
[CrossRef]

Reinemer, G.

T. Böttger, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone, J. Lumin. 94–95, 565 (2001).
[CrossRef]

Ritcey, J. A.

Sun, Y.

T. Böttger, Y. Sun, G. J. Pryde, G. Reinemer, and R. L. Cone, J. Lumin. 94–95, 565 (2001).
[CrossRef]

T. L. Harris, Y. Sun, W. R. Babbitt, R. L. Cone, J. A. Ritcey, and R. W. Equall, Opt. Lett. 25, 85 (2000).
[CrossRef]

Wagner, K. H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Detected signal in a PDA for (a) an analyzer bandwidth of 1 GHz and a single RF reading and (c) an analyzer bandwidth of 2.3 GHz and a 19-line comb RF spectrum. In both cases the angular range is 86 mrad. (b) Same record as in (a) but on a logarithmic vertical scale.

Fig. 2
Fig. 2

Multiscale spectral analysis of a RF signal. (a) The θ=fν transfer function of the spectral analyzer. The spectrum of the probe beam, carrying a 1.85-GHz RF sine wave that is square-frequency modulated at 40 MHz, is shown on the RF axis. Experimental records show the corresponding detected signal as (c) given by a single reading of the PDA or (b) averaged over 100 PDA readings. The signal in area (I) of the PDA window is a low-resolution projection (θ·/r1=13.4 mrad/GHz) of the (0–1.8-GHz) RF interval. A slower frequency scan (θ·/r2=310 mrad/GHz) in window (II) zooms on the region of interest.

Metrics