Abstract

We report on the successful design and fabrication of a polarization-insensitive arrayed waveguide grating (AWG), using solgel-derived silica glass films formed on fused-silica substrates. By controlling the waveguide width and making the propagation constants of the polarizations equal, we have found it possible to fabricate polarization-insensitive solgel-based AWGs. Polarization-insensitive design improves the cross talk by 10 dB in the dynamic range.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Najafi, ed., Glass Integrated Optics and Optical Fiber Devices, Critical Review CR53 (SPIE Optical Engineering Press, Bellingham, Wash., 1994).
  2. S. I. Najafi, P. Coudray, J. Chisham, and M. P. Andrews, Opt. Eng. 36, 1234 (1997).
    [CrossRef]
  3. J. Jeong, S. G. Lee, B.-H. O, and E.-H. Lee, presented at the Fifth Optoelectronics and Communications Conference, Chiba, Japan, July 11–14, 2000.
  4. X. M. Du, T. Touam, L. Degchi, J. L. Guiigault, M. P. Andrews, and S. I. Najafi, Opt. Eng. 37, 1101 (1998).
    [CrossRef]
  5. M. K. Smit, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
    [CrossRef]
  6. S. R. Park and B.-H. O, IEEE Photon. Technol. Lett. 13, 675 (2001).
    [CrossRef]
  7. X. Borrise, D. Jimenez, N. Barniol, F. Perez-Murano, and X. Aymerich, J. Lightwave Technol. 18, 370 (2000).
    [CrossRef]

2001 (1)

S. R. Park and B.-H. O, IEEE Photon. Technol. Lett. 13, 675 (2001).
[CrossRef]

2000 (1)

1998 (1)

X. M. Du, T. Touam, L. Degchi, J. L. Guiigault, M. P. Andrews, and S. I. Najafi, Opt. Eng. 37, 1101 (1998).
[CrossRef]

1997 (1)

S. I. Najafi, P. Coudray, J. Chisham, and M. P. Andrews, Opt. Eng. 36, 1234 (1997).
[CrossRef]

1996 (1)

M. K. Smit, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

Andrews, M. P.

X. M. Du, T. Touam, L. Degchi, J. L. Guiigault, M. P. Andrews, and S. I. Najafi, Opt. Eng. 37, 1101 (1998).
[CrossRef]

S. I. Najafi, P. Coudray, J. Chisham, and M. P. Andrews, Opt. Eng. 36, 1234 (1997).
[CrossRef]

Aymerich, X.

Barniol, N.

Borrise, X.

Chisham, J.

S. I. Najafi, P. Coudray, J. Chisham, and M. P. Andrews, Opt. Eng. 36, 1234 (1997).
[CrossRef]

Coudray, P.

S. I. Najafi, P. Coudray, J. Chisham, and M. P. Andrews, Opt. Eng. 36, 1234 (1997).
[CrossRef]

Degchi, L.

X. M. Du, T. Touam, L. Degchi, J. L. Guiigault, M. P. Andrews, and S. I. Najafi, Opt. Eng. 37, 1101 (1998).
[CrossRef]

Du, X. M.

X. M. Du, T. Touam, L. Degchi, J. L. Guiigault, M. P. Andrews, and S. I. Najafi, Opt. Eng. 37, 1101 (1998).
[CrossRef]

Guiigault, J. L.

X. M. Du, T. Touam, L. Degchi, J. L. Guiigault, M. P. Andrews, and S. I. Najafi, Opt. Eng. 37, 1101 (1998).
[CrossRef]

Jeong, J.

J. Jeong, S. G. Lee, B.-H. O, and E.-H. Lee, presented at the Fifth Optoelectronics and Communications Conference, Chiba, Japan, July 11–14, 2000.

Jimenez, D.

Lee, E.-H.

J. Jeong, S. G. Lee, B.-H. O, and E.-H. Lee, presented at the Fifth Optoelectronics and Communications Conference, Chiba, Japan, July 11–14, 2000.

Lee, S. G.

J. Jeong, S. G. Lee, B.-H. O, and E.-H. Lee, presented at the Fifth Optoelectronics and Communications Conference, Chiba, Japan, July 11–14, 2000.

Najafi, S. I.

X. M. Du, T. Touam, L. Degchi, J. L. Guiigault, M. P. Andrews, and S. I. Najafi, Opt. Eng. 37, 1101 (1998).
[CrossRef]

S. I. Najafi, P. Coudray, J. Chisham, and M. P. Andrews, Opt. Eng. 36, 1234 (1997).
[CrossRef]

O, B.-H.

S. R. Park and B.-H. O, IEEE Photon. Technol. Lett. 13, 675 (2001).
[CrossRef]

J. Jeong, S. G. Lee, B.-H. O, and E.-H. Lee, presented at the Fifth Optoelectronics and Communications Conference, Chiba, Japan, July 11–14, 2000.

Park, S. R.

S. R. Park and B.-H. O, IEEE Photon. Technol. Lett. 13, 675 (2001).
[CrossRef]

Perez-Murano, F.

Smit, M. K.

M. K. Smit, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

Touam, T.

X. M. Du, T. Touam, L. Degchi, J. L. Guiigault, M. P. Andrews, and S. I. Najafi, Opt. Eng. 37, 1101 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Smit, IEEE J. Sel. Top. Quantum Electron. 2, 236 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. R. Park and B.-H. O, IEEE Photon. Technol. Lett. 13, 675 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (2)

S. I. Najafi, P. Coudray, J. Chisham, and M. P. Andrews, Opt. Eng. 36, 1234 (1997).
[CrossRef]

X. M. Du, T. Touam, L. Degchi, J. L. Guiigault, M. P. Andrews, and S. I. Najafi, Opt. Eng. 37, 1101 (1998).
[CrossRef]

Other (2)

S. I. Najafi, ed., Glass Integrated Optics and Optical Fiber Devices, Critical Review CR53 (SPIE Optical Engineering Press, Bellingham, Wash., 1994).

J. Jeong, S. G. Lee, B.-H. O, and E.-H. Lee, presented at the Fifth Optoelectronics and Communications Conference, Chiba, Japan, July 11–14, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Variation of refractive index Δn as a function of UV exposure time for three types of photoiniator. Inset, scanning electron microscope pictures of cleaved solgel WGs for three types of photoinitiator: (a) HMPP, (b) Irgacure 819, and (c) Irgacure 184C.

Fig. 2
Fig. 2

Simulated transmittance characteristics of two solgel waveguide AWG and WG widths of (a) 5 µm and (b) 3 µm as a function of wavelength. Insets: (a) schematics of the solgel-arrayed WG device, (b) variation curves of the effective optical index for TE and TM modes.5

Fig. 3
Fig. 3

Transmittance curve measured as a function of wavelength from one channel of the AWG for both designs, (a) w=5 µm and (b) w=3 µm. The inset in (a) shows the simulated curve for the signal light of mixed polarization, and the insets in (b) show a scanning electron microscope photograph and all five filtered output lights at the output face of a solgel AWG and a schematic representation of the measurement setup for characterization of the WG device.

Tables (1)

Tables Icon

Table 1 Summary of the Design Parameters for the Five-Channel AWGa

Metrics