Abstract

We demonstrate a new experimental approach for flexible femtosecond pulse generation in the mid-IR by use of difference-frequency generation from two tightly synchronized Ti:sapphire lasers. The resultant mid-IR pulse train can be easily tuned, with an adjustable repetition frequency up to 100 MHz, a pulse energy of 1.5×10-13 J, and an intensity noise similar to that of the Ti:sapphire. Rapid switching of the mid-IR wavelength and programmable amplitude modulation are achieved by precision setting of the time delay between two original pulses.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, Opt. Lett. 25, 1472 (2000).
    [CrossRef]
  2. N. Belabas, J. P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, Opt. Lett. 26, 743 (2001).
    [CrossRef]
  3. M. R. X. de Barros, R. S. Miranda, T. M. Jedju, and P. C. Becker, Opt. Lett. 20, 480 (1995).
    [CrossRef] [PubMed]
  4. R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, and T. Elsaesser, Opt. Lett. 23, 861 (1998).
    [CrossRef]
  5. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
    [CrossRef]
  6. A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phy. B 59, 211 (1994).
    [CrossRef]
  7. S. Ehret and H. Schneider, Appl. Phys. B 66, 27 (1998).
    [CrossRef]
  8. L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
    [CrossRef]
  9. R. K. Shelton, S. M. Foreman, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
    [CrossRef]
  10. D. R. Suhre, N. B. Singh, V. Balakrishna, N. C. Fernelius, and F. K. Hopkings, Opt. Lett. 22, 775 (1997).
    [CrossRef] [PubMed]
  11. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
    [CrossRef] [PubMed]

2002 (1)

2001 (3)

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

N. Belabas, J. P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, Opt. Lett. 26, 743 (2001).
[CrossRef]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

2000 (1)

1999 (1)

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

1998 (2)

1997 (1)

1995 (1)

1994 (1)

A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phy. B 59, 211 (1994).
[CrossRef]

Balakrishna, V.

Becker, P. C.

Belabas, N.

Bousquet, B.

Canioni, L.

de Barros, M. R. X.

Ehret, S.

S. Ehret and H. Schneider, Appl. Phys. B 66, 27 (1998).
[CrossRef]

Eickemeyer, F.

F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, Opt. Lett. 25, 1472 (2000).
[CrossRef]

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Elsaesser, T.

Fernelius, N. C.

Foreman, S. M.

Hall, J. L.

R. K. Shelton, S. M. Foreman, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Hasselbeck, M. P.

Hopkings, F. K.

Jedju, T. M.

Joffre, M.

Joschko, M.

Kaindl, R. A.

Kapteyn, H. C.

R. K. Shelton, S. M. Foreman, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Kruck, P.

A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phy. B 59, 211 (1994).
[CrossRef]

Likforman, J. P.

Lohner, A.

A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phy. B 59, 211 (1994).
[CrossRef]

Ma, L.-S.

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Miranda, R. S.

Murnane, M. M.

R. K. Shelton, S. M. Foreman, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Notcutt, M.

Rühle, W. W.

A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phy. B 59, 211 (1994).
[CrossRef]

Schneider, H.

S. Ehret and H. Schneider, Appl. Phys. B 66, 27 (1998).
[CrossRef]

Shelton, R. K.

R. K. Shelton, S. M. Foreman, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Singh, N. B.

Smith, D. C.

Suhre, D. R.

Weiner, A. M.

Woerner, M.

Ye, J.

R. K. Shelton, S. M. Foreman, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, Opt. Lett. 27, 312 (2002).
[CrossRef]

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Appl. Phy. B (1)

A. Lohner, P. Kruck, and W. W. Rühle, Appl. Phy. B 59, 211 (1994).
[CrossRef]

Appl. Phys. B (1)

S. Ehret and H. Schneider, Appl. Phys. B 66, 27 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (1)

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, Phys. Rev. A 64, 021802 (2001).
[CrossRef]

Science (1)

R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, Science 293, 1286 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental system used to generate and characterize femtosecond MIR pulses: Two fs Ti:s laser with separate center wavelengths are tightly synchronized and are mixed in a 1-mm-thick GaSe crystal that is angle tuned for type I difference-frequency mixing. λ/2, half-wave plates; BBO, β-barium borate; CM, chirped-mirror pair; DM, dichroic beam splitter; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Cross-correlation measurement of simultaneous SFG (top) and DFG (bottom). The insets show records of timing jitter (of a few second duration) determined from intensity fluctuations of the respective signals, observed through 1-MHz (left) and 160-Hz (right) low-pass filters when the two pulse trains are offset by half a pulse width.

Fig. 3
Fig. 3

(a) MIR average power, as a function of wavelength: squares, raw data corrected only for detector response; circles, normalized to the incident power of each Ti:s laser; triangles, normalized to exiting power of each Ti:s laser. (b) Spectra for various external phase-matching angles, all taken for the same separation of the Ti:s center wavelengths. Here, the peak point corresponds to one data point in (a). (c) Squares, external phase-matching angles versus MIR wavelength; triangles, product of the two laser transmissions through GaSe as a function of MIR wavelength.

Fig. 4
Fig. 4

Cross-correlation measurement of the 11.5µm MIR pulse versus the shorter-wavelength Ti:s laser, showing a FWHM of 670 fs.

Fig. 5
Fig. 5

(a) Arbitrary and programmable amplitude modulation of the SFG or DFG light. (b) Spectra of the SFG light for two different timing offsets by the differently chirped Ti:s pulse trains, illustrating a fast and programmable wavelength jump. (c) Frequency-resolved cross-correlations by use of the DFG signal for two different monochromator settings, while triggering the frequency-unresolved signal.

Metrics