Abstract

A symmetric achiral trilayer structure, which consists of a high-index center layer sandwiched between two identical low-index films and embedded in a high-index prism, is designed to produce equal and opposite quarter-wave retardation in reflection and transmission and equal throughput for the p and s polarization at oblique incidence. Such a device splits a beam of incident linearly polarized light into two orthogonally circularly polarized components of equal power that travel in different directions. A visible (633-nm) design that operates at a 60° angle of incidence and an infrared (10.6µm) 45° cube design are presented. The spectral and angular sensitivities of the device are also considered.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), p. 393.
  2. R. M. A. Azzam and F. A. Mahmoud, Appl. Opt. 41, 235 (2002).
    [CrossRef] [PubMed]
  3. R. A. Chipman, Opt. Eng. 28, 90 (1989).
  4. S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerrett, J. Opt. Soc. Am. B 5, 1962 (1988).
    [CrossRef]
  5. J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, and I. Moreno, Opt. Lett. 26, 587 (2001).
    [CrossRef]
  6. L. Li and J. A. Dobrowlski, Appl. Opt. 39, 2754 (2000).
    [CrossRef]
  7. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987), Chap. 4.
  8. D. E. Aspnes and A. A. Studna, Phys. Rev. 27, 985 (1983).
    [CrossRef]
  9. E. Ritter, Appl. Opt. 15, 2318 (1976).
    [CrossRef] [PubMed]
  10. Schott Optical Glass, Inc., 400 York Avenue, Duryea, Pa.
  11. V. V. Efimov, O. V. Ivanov, and D. I. Sementsov, J. Opt. A 3, 514 (2001).
    [CrossRef]
  12. CVD, Inc., 35 Industrial Parkway, Woburn, Mass.
  13. R. M. A. Azzam, Opt. Acta 29, 685 (1982).
    [CrossRef]
  14. R. M. A. Azzam, Opt. Acta 32, 1407 (1985).
    [CrossRef]
  15. R. M. A. Azzam and F. A. Mahmoud, presented at the 1999 Annual Meeting of the Optical Society of America, Santa Clara, Calif., September 26–30, 1999.

2002 (1)

2001 (2)

J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, and I. Moreno, Opt. Lett. 26, 587 (2001).
[CrossRef]

V. V. Efimov, O. V. Ivanov, and D. I. Sementsov, J. Opt. A 3, 514 (2001).
[CrossRef]

2000 (1)

1989 (1)

R. A. Chipman, Opt. Eng. 28, 90 (1989).

1988 (1)

1985 (1)

R. M. A. Azzam, Opt. Acta 32, 1407 (1985).
[CrossRef]

1983 (1)

D. E. Aspnes and A. A. Studna, Phys. Rev. 27, 985 (1983).
[CrossRef]

1982 (1)

R. M. A. Azzam, Opt. Acta 29, 685 (1982).
[CrossRef]

1976 (1)

Adachi, J.

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, Phys. Rev. 27, 985 (1983).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam and F. A. Mahmoud, Appl. Opt. 41, 235 (2002).
[CrossRef] [PubMed]

R. M. A. Azzam, Opt. Acta 32, 1407 (1985).
[CrossRef]

R. M. A. Azzam, Opt. Acta 29, 685 (1982).
[CrossRef]

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987), Chap. 4.

R. M. A. Azzam and F. A. Mahmoud, presented at the 1999 Annual Meeting of the Optical Society of America, Santa Clara, Calif., September 26–30, 1999.

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987), Chap. 4.

Cerqua, K. A.

Chipman, R. A.

R. A. Chipman, Opt. Eng. 28, 90 (1989).

Davis, J. A.

Dobrowlski, J. A.

Efimov, V. V.

V. V. Efimov, O. V. Ivanov, and D. I. Sementsov, J. Opt. A 3, 514 (2001).
[CrossRef]

Fernandez-Pousa, C. R.

Guardalben, M. J.

Ivanov, O. V.

V. V. Efimov, O. V. Ivanov, and D. I. Sementsov, J. Opt. A 3, 514 (2001).
[CrossRef]

Jacobs, S. D.

Li, L.

Mahmoud, F. A.

R. M. A. Azzam and F. A. Mahmoud, Appl. Opt. 41, 235 (2002).
[CrossRef] [PubMed]

R. M. A. Azzam and F. A. Mahmoud, presented at the 1999 Annual Meeting of the Optical Society of America, Santa Clara, Calif., September 26–30, 1999.

Marshall, K. L.

Moreno, I.

Ritter, E.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), p. 393.

Schmid, A.

Sementsov, D. I.

V. V. Efimov, O. V. Ivanov, and D. I. Sementsov, J. Opt. A 3, 514 (2001).
[CrossRef]

Skerrett, K. J.

Studna, A. A.

D. E. Aspnes and A. A. Studna, Phys. Rev. 27, 985 (1983).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), p. 393.

Appl. Opt. (3)

J. Opt. A (1)

V. V. Efimov, O. V. Ivanov, and D. I. Sementsov, J. Opt. A 3, 514 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Acta (2)

R. M. A. Azzam, Opt. Acta 29, 685 (1982).
[CrossRef]

R. M. A. Azzam, Opt. Acta 32, 1407 (1985).
[CrossRef]

Opt. Eng. (1)

R. A. Chipman, Opt. Eng. 28, 90 (1989).

Opt. Lett. (1)

Phys. Rev. (1)

D. E. Aspnes and A. A. Studna, Phys. Rev. 27, 985 (1983).
[CrossRef]

Other (5)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), p. 393.

Schott Optical Glass, Inc., 400 York Avenue, Duryea, Pa.

CVD, Inc., 35 Industrial Parkway, Woburn, Mass.

R. M. A. Azzam and F. A. Mahmoud, presented at the 1999 Annual Meeting of the Optical Society of America, Santa Clara, Calif., September 26–30, 1999.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Reflection and transmission of light by a symmetric trilayer that is immersed in a high-index prism (medium 0). p and s are the linear polarizations parallel and perpendicular to the plane of incidence, respectively, and φ is the angle of incidence. The device splits incident linearly polarized light (LPL) at 45° azimuth into orthogonal left- and right-handed circular polarization components (LCP and RCP, respectively).

Fig. 2
Fig. 2

Angle and wavelength sensitivities of reflection and transmission ellipsometric parameters Δr,ψr and Δt,ψt and the p and s intensity reflectances of the 633-nm CPBS described in the text.

Fig. 3
Fig. 3

Infrared CPBS with a symmetric trilayer embedded in a cube. LPL, linearly polarized light; RCP and LCP, right- and left-handed circular polarization components.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

τ=Tp/Ts=tan ψt expjΔt,
ρ=Rp/Rs=tan ψr expjΔr.
τ=fφ,n0,n1,n2,z1,z2,
ρ=gφ,n0,n1,n2,z1,z2.
zi=di/Di, i=1,2,3,
Di=λ/4ni, i=1,2,3
τ=Tp/Ts=1,
argτ=Δt=±90°.
ρ=Rp/Rs=1
argρ=Δr=±90°.
Tp2=Tp2=Rp2=Rs2=0.5.
z1,z2=0.3064,0.7117
Δr=Δt-180°,
ψr90°-ψt.
AD=Tp-Ts/Tp+Ts=tanψt-45°.

Metrics