Abstract

A long-lived photonic state is observed in measurements of microwave transmission through a helical stack of anisotropic overhead transparencies with various twist defects in the center of the structure. Once account is taken of absorption and of the angular spread of the source, computer simulations of transmission through a polarized localized state are in agreement with measurements. Unlike for isotropic one-dimensional bandgaps, the intensity of the localized mode is not modulated in space on a wavelength scale.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Adibi, A. Scherer, and S.-Y. Lin, eds., Photonic Bandgap Materials and Devices, Proc. SPIE4655 (2002).
  2. H. Yokoyama and K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC, Boca Raton, Fla., 1995).
  3. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
    [CrossRef] [PubMed]
  4. S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, 1977).
  5. K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
    [CrossRef]
  6. A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).
  7. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).
    [CrossRef]
  8. Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
    [CrossRef]
  9. V. I. Kopp and A. Z. Genack, “Chiral twist laser and filter apparatus and method,” U.S. patent6,396,859 (May28, 2002).
  10. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
    [CrossRef]

2001 (2)

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).

2000 (1)

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

1999 (2)

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

1998 (1)

Brett, M. J.

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

Broer, D. J.

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, 1977).

Fan, B.

Genack, A. Z.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).
[CrossRef]

V. I. Kopp and A. Z. Genack, “Chiral twist laser and filter apparatus and method,” U.S. patent6,396,859 (May28, 2002).

Hodgkinson, I. J.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Jeon, Y.-J.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Kee, C.-S.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Kim, J.-E.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Kopp, V. I.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, Opt. Lett. 23, 1707 (1998).
[CrossRef]

V. I. Kopp and A. Z. Genack, “Chiral twist laser and filter apparatus and method,” U.S. patent6,396,859 (May28, 2002).

Lakhtakia, A.

A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Lee, J.-C.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

McCall, M. W.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Messier, R.

A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).

Park, H. Y.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Robbie, K.

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

Thorn, K. E.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Ujihara, K.

H. Yokoyama and K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC, Boca Raton, Fla., 1995).

Vithana, H. K. M.

Wu, Q. H.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Yang, Y.-C.

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Yokoyama, H.

H. Yokoyama and K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC, Boca Raton, Fla., 1995).

Zhang, Z.-Q.

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

Nature (1)

K. Robbie, D. J. Broer, and M. J. Brett, Nature 399, 764 (1999).
[CrossRef]

Opt. Commun. (1)

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, Opt. Commun. 184, 57 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

A. Lakhtakia and R. Messier, Opt. Photon. News 12(9), 27 (2001).

Phys. Rev. E (1)

Y.-C. Yang, C.-S. Kee, J.-E. Kim, H. Y. Park, J.-C. Lee, and Y.-J. Jeon, Phys. Rev. E 60, 6852 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 86, 1753 (2001).
[CrossRef] [PubMed]

Other (4)

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, Cambridge, 1977).

A. Adibi, A. Scherer, and S.-Y. Lin, eds., Photonic Bandgap Materials and Devices, Proc. SPIE4655 (2002).

H. Yokoyama and K. Ujihara, Spontaneous Emission and Laser Oscillation in Microcavities (CRC, Boca Raton, Fla., 1995).

V. I. Kopp and A. Z. Genack, “Chiral twist laser and filter apparatus and method,” U.S. patent6,396,859 (May28, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmittance through a stack of 1500 transparencies.

Fig. 2
Fig. 2

Transmittance through a stack of 3000 transparencies with a 90° chiral twist in the center.

Fig. 3
Fig. 3

Transmittance through a stack of 3000 transparencies with a 90° chiral twist in the center. Both angular spread and absorption are taken into account in the simulation.

Fig. 4
Fig. 4

Comparison of the energy density inside chiral and binary layered structures with the same index contrast and thickness versus coordinate z/P. Pitch P of the chiral structure is twice the period of the binary-layered structure.

Fig. 5
Fig. 5

Transmittance through a stack of 3000 transparencies with a 45° chiral twist in the center.

Fig. 6
Fig. 6

Transmittance through a stack of 3000 transparencies, with a combination of a 45° chiral twist and a quarter-wavelength separation in the center.

Metrics