Abstract

Wavelength beam combining of five ytterbium fiber lasers is demonstrated in a master-oscillator power-amplifier configuration at combined powers up to 6 W. The combined beam profile has an M2 value of 1.14, which is equal to that of an individual fiber. Beam steering in one dimension over 140 resolvable spots is also demonstrated.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Cook and T. Y. Fan, in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 178.
  2. V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, Opt. Lett. 25, 405 (2000).
    [CrossRef]
  3. W. A. Clarkson, V. Matera, T. M. J. Kendall, A. Abdolvand, D. C. Hanna, J. Nilsson, and P. W. Turner, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWM2.
  4. See, for example, A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, Opt. Commun. 186, 311 (2000).
    [CrossRef]
  5. M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, and C. Ozkul, Opt. Lett. 27, 1294 (2002).
    [CrossRef]
  6. We have used tapered-fiber bundles from OFS Fitel (formerly Lucent Specialty Fiber Division) and Resonance Photonics with no noticeable difference in performance in this application.
  7. IPG Photonics YAM-2-PM polarization-maintaining Yb fiber amplifier with 2-W saturated output at the gain center. This is a two-stage amplifier with an isolator between the stages and none on the output. Although the amplifiers are polarization maintaining, they are seeded with unpolarized light from the oscillators so the output of the amplifiers is also unpolarized.
  8. E. J. Bochove, IEEE J. Quantum Electron. 38, 432 (2002).
    [CrossRef]
  9. See, for example, J. P. Koplow, D. A. V. Kliner, and L. Goldberg, Opt. Lett. 25, 442 (2000).
    [CrossRef]

2002 (2)

2000 (3)

Abdolvand, A.

W. A. Clarkson, V. Matera, T. M. J. Kendall, A. Abdolvand, D. C. Hanna, J. Nilsson, and P. W. Turner, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWM2.

Bochove, E. J.

E. J. Bochove, IEEE J. Quantum Electron. 38, 432 (2002).
[CrossRef]

Brunel, M.

Chartier, T.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, and C. Ozkul, Opt. Lett. 27, 1294 (2002).
[CrossRef]

See, for example, A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, Opt. Commun. 186, 311 (2000).
[CrossRef]

Choi, H. K.

Clarkson, W. A.

W. A. Clarkson, V. Matera, T. M. J. Kendall, A. Abdolvand, D. C. Hanna, J. Nilsson, and P. W. Turner, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWM2.

Cook, C. C.

V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, Opt. Lett. 25, 405 (2000).
[CrossRef]

C. C. Cook and T. Y. Fan, in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 178.

Daneu, V.

Fan, T. Y.

V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, Opt. Lett. 25, 405 (2000).
[CrossRef]

C. C. Cook and T. Y. Fan, in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 178.

Goldberg, L.

Hanna, D. C.

W. A. Clarkson, V. Matera, T. M. J. Kendall, A. Abdolvand, D. C. Hanna, J. Nilsson, and P. W. Turner, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWM2.

Hideur, A.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, and C. Ozkul, Opt. Lett. 27, 1294 (2002).
[CrossRef]

See, for example, A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, Opt. Commun. 186, 311 (2000).
[CrossRef]

Kendall, T. M. J.

W. A. Clarkson, V. Matera, T. M. J. Kendall, A. Abdolvand, D. C. Hanna, J. Nilsson, and P. W. Turner, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWM2.

Kliner, D. A. V.

Koplow, J. P.

Martel, G.

Matera, V.

W. A. Clarkson, V. Matera, T. M. J. Kendall, A. Abdolvand, D. C. Hanna, J. Nilsson, and P. W. Turner, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWM2.

Nilsson, J.

W. A. Clarkson, V. Matera, T. M. J. Kendall, A. Abdolvand, D. C. Hanna, J. Nilsson, and P. W. Turner, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWM2.

Ozkul, C.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, and C. Ozkul, Opt. Lett. 27, 1294 (2002).
[CrossRef]

See, for example, A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, Opt. Commun. 186, 311 (2000).
[CrossRef]

Salhi, M.

Sanchez, A.

Sanchez, F.

See, for example, A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, Opt. Commun. 186, 311 (2000).
[CrossRef]

Turner, G. W.

Turner, P. W.

W. A. Clarkson, V. Matera, T. M. J. Kendall, A. Abdolvand, D. C. Hanna, J. Nilsson, and P. W. Turner, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWM2.

IEEE J. Quantum Electron. (1)

E. J. Bochove, IEEE J. Quantum Electron. 38, 432 (2002).
[CrossRef]

Opt. Commun. (1)

See, for example, A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, Opt. Commun. 186, 311 (2000).
[CrossRef]

Opt. Lett. (3)

Other (4)

We have used tapered-fiber bundles from OFS Fitel (formerly Lucent Specialty Fiber Division) and Resonance Photonics with no noticeable difference in performance in this application.

IPG Photonics YAM-2-PM polarization-maintaining Yb fiber amplifier with 2-W saturated output at the gain center. This is a two-stage amplifier with an isolator between the stages and none on the output. Although the amplifiers are polarization maintaining, they are seeded with unpolarized light from the oscillators so the output of the amplifiers is also unpolarized.

C. C. Cook and T. Y. Fan, in Advanced Solid State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds. Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), p. 178.

W. A. Clarkson, V. Matera, T. M. J. Kendall, A. Abdolvand, D. C. Hanna, J. Nilsson, and P. W. Turner, in Conference on Lasers and Electro-Optics, Vol. 56 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), paper CWM2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the MOPA architecture. Each fiber in the master oscillator operates at a unique wavelength determined by the grating. Part of the light from each oscillator fiber is coupled into its own amplifier, and the amplifier outputs are combined with an identical grating.

Fig. 2
Fig. 2

Details of the fiber oscillator. Each fiber oscillator operates in a unidirectional ring geometry. C, 50/50 fiber coupler; I, fiber isolator; TFB, tapered-fiber bundle (for coupling pump light into the outer core of the Yb fiber).

Fig. 3
Fig. 3

Spectrum of the amplified output. The five fiber oscillators each have 0.05nm linewidth, and here they are tuned near the gain peak of the amplifiers.

Fig. 4
Fig. 4

Dispersion-plane beam profile of five combined laser elements from a gold-coated grating on a Zerodur substrate. The power that is incident on the grating is 8.4 W, with a curve-fit M2 value of 1.14.

Fig. 5
Fig. 5

Combined far-field beam profile from amplifiers for six settings of the oscillator mirror showing a possible 140 resolvable spots in the far field.

Metrics