Abstract

An organic nonlinear optical crystal waveguide consisting of 4-nitrobenzylidene-3-acetamino-4-methoxyaniline (MNBA) and 4-nitrobenzylidene-3-ethylcarbonylamino-4-methoxyaniline (MNBA-Et) has been fabricated by a two-step heteroepitaxial growth technique. An MNBA-Et homoepitaxial layer used as a buffer layer prevents the formation of a MNBA polycrystalline domain at the heteroepitaxial interface. The MNBA-Et homoepitaxial layer also improves the crystallinity of a single-domain MNBA heteroepitaxial layer. The transmission loss of the MNBA–MNBA-Et slab waveguide is reduced to less than 3 dB/cm by the insertion of the MNBA-Et homoepitaxial layer.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Materials and Crystals (Academic, Orlando, Fla., 1987), Vol. 1.
  2. T. Kondo and R. Ito, in Molecular Nonlinear Optics Materials, Physics, and Devices, J. Zyss, ed. (Academic, Orlando, Fla., 1994), Chap. 5, pp. 201–243.
  3. T. Tsunekawa, T. Gotoh, H. Mataki, S. Fukuda, and M. Iwamoto, Proc. SPIE 1337, 272 (1990).
    [Crossref]
  4. T. Gotoh, S. Fukuda, and T. Yamashiki, in Nonlinear Optics: Fundamentals, Materials and Devices, S. Miyata, ed. (Elsevier, Amsterdam, 1992), p. 219.
    [Crossref]
  5. T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 39, 6286 (2000).
    [Crossref]
  6. T. Kaino, Oyo Buturi 69, 532 (2000).
  7. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989), Chap. 2, p. 11; Chap. 8, pp. 277 and 240.
  8. T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 41, 3965 (2002).
    [Crossref]

2002 (1)

T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 41, 3965 (2002).
[Crossref]

2000 (2)

T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 39, 6286 (2000).
[Crossref]

T. Kaino, Oyo Buturi 69, 532 (2000).

1990 (1)

T. Tsunekawa, T. Gotoh, H. Mataki, S. Fukuda, and M. Iwamoto, Proc. SPIE 1337, 272 (1990).
[Crossref]

Fukuda, S.

T. Tsunekawa, T. Gotoh, H. Mataki, S. Fukuda, and M. Iwamoto, Proc. SPIE 1337, 272 (1990).
[Crossref]

T. Gotoh, S. Fukuda, and T. Yamashiki, in Nonlinear Optics: Fundamentals, Materials and Devices, S. Miyata, ed. (Elsevier, Amsterdam, 1992), p. 219.
[Crossref]

Gotoh, T.

T. Tsunekawa, T. Gotoh, H. Mataki, S. Fukuda, and M. Iwamoto, Proc. SPIE 1337, 272 (1990).
[Crossref]

T. Gotoh, S. Fukuda, and T. Yamashiki, in Nonlinear Optics: Fundamentals, Materials and Devices, S. Miyata, ed. (Elsevier, Amsterdam, 1992), p. 219.
[Crossref]

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989), Chap. 2, p. 11; Chap. 8, pp. 277 and 240.

Ito, R.

T. Kondo and R. Ito, in Molecular Nonlinear Optics Materials, Physics, and Devices, J. Zyss, ed. (Academic, Orlando, Fla., 1994), Chap. 5, pp. 201–243.

Iwamoto, M.

T. Tsunekawa, T. Gotoh, H. Mataki, S. Fukuda, and M. Iwamoto, Proc. SPIE 1337, 272 (1990).
[Crossref]

Kaino, T.

T. Kaino, Oyo Buturi 69, 532 (2000).

Kondo, T.

T. Kondo and R. Ito, in Molecular Nonlinear Optics Materials, Physics, and Devices, J. Zyss, ed. (Academic, Orlando, Fla., 1994), Chap. 5, pp. 201–243.

Mataki, H.

T. Tsunekawa, T. Gotoh, H. Mataki, S. Fukuda, and M. Iwamoto, Proc. SPIE 1337, 272 (1990).
[Crossref]

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989), Chap. 2, p. 11; Chap. 8, pp. 277 and 240.

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989), Chap. 2, p. 11; Chap. 8, pp. 277 and 240.

Tsuda, K.

T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 41, 3965 (2002).
[Crossref]

T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 39, 6286 (2000).
[Crossref]

Tsunekawa, T.

T. Tsunekawa, T. Gotoh, H. Mataki, S. Fukuda, and M. Iwamoto, Proc. SPIE 1337, 272 (1990).
[Crossref]

Yamashiki, T.

T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 41, 3965 (2002).
[Crossref]

T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 39, 6286 (2000).
[Crossref]

T. Gotoh, S. Fukuda, and T. Yamashiki, in Nonlinear Optics: Fundamentals, Materials and Devices, S. Miyata, ed. (Elsevier, Amsterdam, 1992), p. 219.
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 39, 6286 (2000).
[Crossref]

T. Yamashiki and K. Tsuda, Jpn. J. Appl. Phys. 41, 3965 (2002).
[Crossref]

Oyo Buturi (1)

T. Kaino, Oyo Buturi 69, 532 (2000).

Proc. SPIE (1)

T. Tsunekawa, T. Gotoh, H. Mataki, S. Fukuda, and M. Iwamoto, Proc. SPIE 1337, 272 (1990).
[Crossref]

Other (4)

T. Gotoh, S. Fukuda, and T. Yamashiki, in Nonlinear Optics: Fundamentals, Materials and Devices, S. Miyata, ed. (Elsevier, Amsterdam, 1992), p. 219.
[Crossref]

D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Materials and Crystals (Academic, Orlando, Fla., 1987), Vol. 1.

T. Kondo and R. Ito, in Molecular Nonlinear Optics Materials, Physics, and Devices, J. Zyss, ed. (Academic, Orlando, Fla., 1994), Chap. 5, pp. 201–243.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989), Chap. 2, p. 11; Chap. 8, pp. 277 and 240.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of a typical MNBA–MNBA-Et waveguide, showing the relation of the principal axes to the crystallographic axes in the MNBA.

Fig. 2
Fig. 2

X-ray rocking curves of an MNBA–MNBA-Et heteroepilayer as altered by changes in TMNBAEt. The thickness of the MNBA heteroepilayer was 3.5 µm. The FWHM of the MNBA (0, 4, 0) plane was changed to (a) 317.1 s when TMNBAEt was 0.0 µm, (b) 282.8 s when TMNBAEt was 0.4 µm, and (c) 133.6 s when TMNBAEt was 0.8 µm.

Fig. 3
Fig. 3

Change in transmission loss caused by insertion of the MNBA-Et buffer layer.

Tables (1)

Tables Icon

Table 1 Measured Data Related to the Transmission Loss of MNBA/MNBA-Et Waveguidesa

Metrics