Abstract

A nonlinear amplifying loop mirror constructed from erbium-doped fiber is proposed for simultaneous amplification and compression of ultrashort fundamental solitons. Numerical simulations show that, unlike conventional erbium-doped fiber amplifiers in which nonlinear effects lead to serious degradation of pulse quality, the proposed device performs efficient high-quality amplification and compression of ultrashort fundamental solitons while it almost completely preserves the soliton nature of the input pulses. Moreover, the performance of the device is insensitive to small variations in the loop length and in the power-splitting ratio of the coupler.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kurokawa and M. Nakazawa, Appl. Phys. Lett. 58, 2871 (1991).
    [CrossRef]
  2. I. Yu. Khrushchev, A. B. Grudinin, E. M. Dianov, D. V. Korobkin, V. A. Semenov, and A. M. Prokhorov, Electron. Lett. 26, 456 (1990).
    [CrossRef]
  3. G. P. Agrawal, Opt. Lett. 16, 226 (1991).
    [CrossRef] [PubMed]
  4. B. Gross and J. T. Manassah, Opt. Lett. 17, 340 (1992).
    [CrossRef] [PubMed]
  5. D. S. Peter, W. Hodel, and H. P. Weber, Opt. Commun. 130, 75 (1996).
    [CrossRef]
  6. J. D. Minelly, A. Galvanauskas, M. E. Fermann, D. Harter, J. E. Caplen, Z. J. Chen, and D. N. Payne, Opt. Lett. 20, 1797 (1995).
    [CrossRef]
  7. I. Y. Khrushchev, I. H. White, and R. V. Penty, Electron. Lett. 34, 1009 (1998).
    [CrossRef]
  8. J. Wu, Y. Li, C. Lou, and Y. Gao, Opt. Commun. 180, 43 (2000).
    [CrossRef]
  9. K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 13, 526 (2001).
    [CrossRef]
  10. K. Smith, E. J. Greer, N. J. Doran, D. M. Bird, and K. H. Cameron, Opt. Lett. 17, 408 (1992).
    [CrossRef] [PubMed]
  11. M. Matsumoto, A. Hasegawa, and Y. Kodama, Opt. Lett. 19, 1019 (1994).
    [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chap. 11.
  13. N. J. Doran and D. Wood, Opt. Lett. 13, 56 (1988).
    [CrossRef] [PubMed]

2001

K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 13, 526 (2001).
[CrossRef]

2000

J. Wu, Y. Li, C. Lou, and Y. Gao, Opt. Commun. 180, 43 (2000).
[CrossRef]

1998

I. Y. Khrushchev, I. H. White, and R. V. Penty, Electron. Lett. 34, 1009 (1998).
[CrossRef]

1996

D. S. Peter, W. Hodel, and H. P. Weber, Opt. Commun. 130, 75 (1996).
[CrossRef]

1995

1994

1992

1991

G. P. Agrawal, Opt. Lett. 16, 226 (1991).
[CrossRef] [PubMed]

K. Kurokawa and M. Nakazawa, Appl. Phys. Lett. 58, 2871 (1991).
[CrossRef]

1990

I. Yu. Khrushchev, A. B. Grudinin, E. M. Dianov, D. V. Korobkin, V. A. Semenov, and A. M. Prokhorov, Electron. Lett. 26, 456 (1990).
[CrossRef]

1988

Agrawal, G. P.

G. P. Agrawal, Opt. Lett. 16, 226 (1991).
[CrossRef] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chap. 11.

Bird, D. M.

Cameron, K. H.

Caplen, J. E.

Chen, Z. J.

Dianov, E. M.

I. Yu. Khrushchev, A. B. Grudinin, E. M. Dianov, D. V. Korobkin, V. A. Semenov, and A. M. Prokhorov, Electron. Lett. 26, 456 (1990).
[CrossRef]

Doran, N. J.

Fermann, M. E.

Galvanauskas, A.

Gao, Y.

J. Wu, Y. Li, C. Lou, and Y. Gao, Opt. Commun. 180, 43 (2000).
[CrossRef]

Greer, E. J.

Gross, B.

Grudinin, A. B.

I. Yu. Khrushchev, A. B. Grudinin, E. M. Dianov, D. V. Korobkin, V. A. Semenov, and A. M. Prokhorov, Electron. Lett. 26, 456 (1990).
[CrossRef]

Harter, D.

Hasegawa, A.

Hodel, W.

D. S. Peter, W. Hodel, and H. P. Weber, Opt. Commun. 130, 75 (1996).
[CrossRef]

Khrushchev, I. Y.

I. Y. Khrushchev, I. H. White, and R. V. Penty, Electron. Lett. 34, 1009 (1998).
[CrossRef]

Khrushchev, I. Yu.

I. Yu. Khrushchev, A. B. Grudinin, E. M. Dianov, D. V. Korobkin, V. A. Semenov, and A. M. Prokhorov, Electron. Lett. 26, 456 (1990).
[CrossRef]

Kodama, Y.

Korobkin, D. V.

I. Yu. Khrushchev, A. B. Grudinin, E. M. Dianov, D. V. Korobkin, V. A. Semenov, and A. M. Prokhorov, Electron. Lett. 26, 456 (1990).
[CrossRef]

Kurokawa, K.

K. Kurokawa and M. Nakazawa, Appl. Phys. Lett. 58, 2871 (1991).
[CrossRef]

Li, Y.

J. Wu, Y. Li, C. Lou, and Y. Gao, Opt. Commun. 180, 43 (2000).
[CrossRef]

Lou, C.

J. Wu, Y. Li, C. Lou, and Y. Gao, Opt. Commun. 180, 43 (2000).
[CrossRef]

Manassah, J. T.

Matsumoto, M.

Minelly, J. D.

Nakazawa, M.

K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 13, 526 (2001).
[CrossRef]

K. Kurokawa and M. Nakazawa, Appl. Phys. Lett. 58, 2871 (1991).
[CrossRef]

Payne, D. N.

Penty, R. V.

I. Y. Khrushchev, I. H. White, and R. V. Penty, Electron. Lett. 34, 1009 (1998).
[CrossRef]

Peter, D. S.

D. S. Peter, W. Hodel, and H. P. Weber, Opt. Commun. 130, 75 (1996).
[CrossRef]

Prokhorov, A. M.

I. Yu. Khrushchev, A. B. Grudinin, E. M. Dianov, D. V. Korobkin, V. A. Semenov, and A. M. Prokhorov, Electron. Lett. 26, 456 (1990).
[CrossRef]

Semenov, V. A.

I. Yu. Khrushchev, A. B. Grudinin, E. M. Dianov, D. V. Korobkin, V. A. Semenov, and A. M. Prokhorov, Electron. Lett. 26, 456 (1990).
[CrossRef]

Smith, K.

Tamura, K. R.

K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 13, 526 (2001).
[CrossRef]

Weber, H. P.

D. S. Peter, W. Hodel, and H. P. Weber, Opt. Commun. 130, 75 (1996).
[CrossRef]

White, I. H.

I. Y. Khrushchev, I. H. White, and R. V. Penty, Electron. Lett. 34, 1009 (1998).
[CrossRef]

Wood, D.

Wu, J.

J. Wu, Y. Li, C. Lou, and Y. Gao, Opt. Commun. 180, 43 (2000).
[CrossRef]

Appl. Phys. Lett.

K. Kurokawa and M. Nakazawa, Appl. Phys. Lett. 58, 2871 (1991).
[CrossRef]

Electron. Lett.

I. Yu. Khrushchev, A. B. Grudinin, E. M. Dianov, D. V. Korobkin, V. A. Semenov, and A. M. Prokhorov, Electron. Lett. 26, 456 (1990).
[CrossRef]

I. Y. Khrushchev, I. H. White, and R. V. Penty, Electron. Lett. 34, 1009 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

K. R. Tamura and M. Nakazawa, IEEE Photon. Technol. Lett. 13, 526 (2001).
[CrossRef]

Opt. Commun.

J. Wu, Y. Li, C. Lou, and Y. Gao, Opt. Commun. 180, 43 (2000).
[CrossRef]

D. S. Peter, W. Hodel, and H. P. Weber, Opt. Commun. 130, 75 (1996).
[CrossRef]

Opt. Lett.

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, Boston, Mass., 1995), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Temporal and (b) spectral evolution of an input fundamental soliton in an EDFA with 10-dB gain per dispersion length. The other parameters are d=0.092, τR=0.0075, and δ=0.0042.

Fig. 2
Fig. 2

Temporal shapes of the transmitted pulse on (a) linear and (b) logarithmic scales. (c) Spectrum and (d) frequency chirp of the transmitted pulse.

Fig. 3
Fig. 3

(a) Temporal shapes and (b) spectra of the clockwise and the counterclockwise traveling pulses before recombination. The transmitted pulse is shown for comparison.

Fig. 4
Fig. 4

Transmitted pulse shapes at (a) various loop lengths and (b) various coupler power-splitting ratios.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

iuξ+121-id2uτ2+u2u= i2μu+iδ3uτ3+τRuu2τ,
ξ=zLD=zβ2T02,  τ=t-z/vgT0,  d=g0LDT22T02,
μ=g0-αLD,  δ=β36β2T0,  τR=TRT0,

Metrics