Abstract

We introduce a new approach to the characterization of femtosecond optical pulses based on a remarkably simple setup combining a two-photon detector and a pulse shaper consisting of a longitudinal acousto-optic programmable filter. The operation of this setup is demonstrated through the use of a new version of spectral phase interferometry for direct electric-field reconstruction based on time-domain instead of on frequency-domain interferometry.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Walmsley and V. Wong, J. Opt. Soc. Am. B 13, 2453 (1996).
    [CrossRef]
  2. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  3. C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).
  4. D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, Opt. Lett. 22, 233 (1997).
    [CrossRef] [PubMed]
  5. W. Rudolph, M. Sheik-Bahae, A. Bernstein, and L. F. Lester, Opt. Lett. 22, 313 (1997).
    [CrossRef] [PubMed]
  6. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1344 (1997).
    [CrossRef]
  7. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, Opt. Lett. 25, 575 (2000).
    [CrossRef]
  8. D. Kaplan and P. Tournois, J. Phys. IV France 12, Pr5-69 (2002).
  9. C. Dorrer, P. Londero, and I. A. Walmsley, Opt. Lett. 26, 1510 (2001).
    [CrossRef]
  10. K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
    [CrossRef]
  11. The spectral bandwidth of our pulse shaper is limited to 100 THz because of the electronics driving the acousto-optic transducer. This value is much greater than the 10-THz bandwidth of our laser pulses and is therefore not detrimental to the measurement because the bandwidth is exactly centered on the laser’s center frequency.

2002 (1)

D. Kaplan and P. Tournois, J. Phys. IV France 12, Pr5-69 (2002).

2001 (2)

C. Dorrer, P. Londero, and I. A. Walmsley, Opt. Lett. 26, 1510 (2001).
[CrossRef]

C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).

2000 (1)

1997 (4)

1996 (1)

1989 (1)

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Baltuska, A.

Bernstein, A.

Cheng, Z.

DeLong, K.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Dorrer, C.

C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).

C. Dorrer, P. Londero, and I. A. Walmsley, Opt. Lett. 26, 1510 (2001).
[CrossRef]

Fittinghoff, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Gaeta, A. L.

Joffre, M.

C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).

Kane, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Kaplan, D.

D. Kaplan and P. Tournois, J. Phys. IV France 12, Pr5-69 (2002).

Krumbügel, M.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Laude, V.

Lester, L. F.

Londero, P.

McGowan, C.

Mogi, K.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Naganuma, K.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Padgett, M.

Pshenichnikov, M. S.

Ranka, J. K.

Reid, D. T.

Richman, B.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Rudolph, W.

Sheik-Bahae, M.

Sibbett, W.

Sleat, W. E.

Spielmann, Ch.

Sweester, J.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Tournois, P.

Trebino, R.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Verluise, F.

Walmsley, I. A.

Wiersma, D. A.

Wong, V.

Yamada, H.

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

C. R. Acad. Sci. Paris (1)

C. Dorrer and M. Joffre, C. R. Acad. Sci. Paris 2, 1415 (2001).

IEEE J. Quantum Electron. (1)

K. Naganuma, K. Mogi, and H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. IV France (1)

D. Kaplan and P. Tournois, J. Phys. IV France 12, Pr5-69 (2002).

Opt. Lett. (5)

Rev. Sci. Instrum. (1)

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweester, M. Krumbügel, B. Richman, and D. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Other (1)

The spectral bandwidth of our pulse shaper is limited to 100 THz because of the electronics driving the acousto-optic transducer. This value is much greater than the 10-THz bandwidth of our laser pulses and is therefore not detrimental to the measurement because the bandwidth is exactly centered on the laser’s center frequency.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for measuring an ultrashort pulse by use of a pulse shaper instead of an assembly of discrete optical components. The incident pulse is sent through the pulse shaper, here a Dazzler device, and detected with both a one-photon and a two-photon detector. If the pulse shaper generates two replicas of the incident pulse, this setup is equivalent to second-order interferometric autocorrelator. If the pulse shaper generates the sequence of pulses shown in Fig. 2, the setup is an implementation of time-domain HOT SPIDER. The one-photon detector is not absolutely required but makes possible the efficient measurement of the power spectrum through Fourier-transform spectroscopy.

Fig. 2
Fig. 2

Time-domain HOT SPIDER. The second-order nonlinear signal is recorded by a two-photon time-integrating detector as a function of time delay τ between a reference pulse, E0, and a superposition of two pulses: the pulse to be measured, E, and a quasi-monochromatic pulse, EQM.

Fig. 3
Fig. 3

Intensity (dashed curve) and phase retrieved for the pulses delivered by the pulse shaper by use of the time-domain HOT SPIDER procedure described in the text.

Fig. 4
Fig. 4

(a) Diamonds, difference in spectral phase between two time-domain HOT SPIDER measurements that differ by a known amount of second-order phase (8300 fs2). The expected spectral-phase difference and the spectral intensity (spectrum) are also shown. (b) Phase error computed by subtraction of the theoretical phase from the measured value.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Sj2τ=-+E0t-τ+Et+EQM,jt4dt.
Sj,2ω2τ=-+0*2t-τt+QM,jt2dt=02*-tt+QM,jt2τ,

Metrics