Abstract

Biosensors based on the shift of whispering-gallery modes in microspheres accompanying protein adsorption are described by use of a perturbation theory. For random spatial adsorption, theory predicts that the shift should be inversely proportional to microsphere radius R and proportional to protein surface density and excess polarizability. Measurements are found to be consistent with the theory, and the correspondence enables the average surface area occupied by a single protein to be estimated. These results are consistent with crystallographic data for bovine serum albumin. The theoretical shift for adsorption of a single protein is found to be extremely sensitive to the target region, with adsorption in the most sensitive region varying as 1/R5/2. Specific parameters for single protein or virus particle detection are predicted.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 1 (2002).
    [CrossRef]
  2. A. Serpengüzel, S. Arnold, and G. Griffel, Opt. Lett. 20, 654 (1995).
    [CrossRef]
  3. J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
    [CrossRef]
  4. D. Q. Chowdhury, S. C. Hill, and M. M. Mazumder, IEEE J. Quantum Electron. 29, 2553 (1993).
    [CrossRef]
  5. J. Wen, T. Arakawa, and J. S. Philo, Anal. Biochem. 240, 155 (1996).
    [CrossRef] [PubMed]
  6. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 745.
  7. C. C. Lam, P. T. Leung, and K. Young, J. Opt. Soc. Am. B 9, 1585 (1992).
    [CrossRef]
  8. K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
    [CrossRef]
  9. G. Griffel, S. Arnold, D. Taskent, A. Serpenguezel, J. Connolly, and D. G. Morris, Opt. Lett. 21, 695 (1996).
    [CrossRef] [PubMed]
  10. D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
    [CrossRef] [PubMed]
  11. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 753.

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 1 (2002).
[CrossRef]

2000 (1)

K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
[CrossRef]

1999 (1)

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

1996 (2)

1995 (1)

1993 (1)

D. Q. Chowdhury, S. C. Hill, and M. M. Mazumder, IEEE J. Quantum Electron. 29, 2553 (1993).
[CrossRef]

1992 (1)

1989 (1)

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Arakawa, T.

J. Wen, T. Arakawa, and J. S. Philo, Anal. Biochem. 240, 155 (1996).
[CrossRef] [PubMed]

Arnold, S.

Auvay, S.

K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
[CrossRef]

Bourgoin, J. P.

K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
[CrossRef]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 1 (2002).
[CrossRef]

Broom, M. B.

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Burghard, M.

K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
[CrossRef]

Carter, D. C.

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Choi, K. H.

K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
[CrossRef]

Chowdhury, D. Q.

D. Q. Chowdhury, S. C. Hill, and M. M. Mazumder, IEEE J. Quantum Electron. 29, 2553 (1993).
[CrossRef]

Connolly, J.

Duesberg, G. S.

K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
[CrossRef]

Esteve, D.

K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
[CrossRef]

Gernert, K. M.

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Griffel, G.

Haus, H. A.

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

He, X. M.

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Hill, S. C.

D. Q. Chowdhury, S. C. Hill, and M. M. Mazumder, IEEE J. Quantum Electron. 29, 2553 (1993).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 745.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 753.

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 1 (2002).
[CrossRef]

Laine, J. P.

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

Lam, C. C.

Leung, P. T.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 1 (2002).
[CrossRef]

Little, B. E.

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

Mazumder, M. M.

D. Q. Chowdhury, S. C. Hill, and M. M. Mazumder, IEEE J. Quantum Electron. 29, 2553 (1993).
[CrossRef]

Miller, T. Y.

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Morris, D. G.

Munson, S. H.

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Philo, J. S.

J. Wen, T. Arakawa, and J. S. Philo, Anal. Biochem. 240, 155 (1996).
[CrossRef] [PubMed]

Roth, S.

K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
[CrossRef]

Serpenguezel, A.

Serpengüzel, A.

Taskent, D.

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 1 (2002).
[CrossRef]

Twigg, P. D.

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 1 (2002).
[CrossRef]

Wen, J.

J. Wen, T. Arakawa, and J. S. Philo, Anal. Biochem. 240, 155 (1996).
[CrossRef] [PubMed]

Young, K.

Anal. Biochem. (1)

J. Wen, T. Arakawa, and J. S. Philo, Anal. Biochem. 240, 155 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 1 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Q. Chowdhury, S. C. Hill, and M. M. Mazumder, IEEE J. Quantum Electron. 29, 2553 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. P. Laine, B. E. Little, and H. A. Haus, IEEE Photon. Technol. Lett. 11, 1429 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Science (1)

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Surf. Sci. (1)

K. H. Choi, J. P. Bourgoin, S. Auvay, D. Esteve, G. S. Duesberg, S. Roth, and M. Burghard, Surf. Sci. 462, 195 (2000).
[CrossRef]

Other (2)

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 745.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p. 753.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Nanoscopic protein molecule at position ri on the surface of a sphere near an eroded optical fiber core. The sphere and fiber are surrounded by an aqueous solution.

Fig. 2
Fig. 2

Saturation shifts of WGM resonances measured for BSA protein adsorption versus 1/R. The solid line is a fit based on relation (4), which gives a surface density σp=2.9×1012 cm-2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δωωi-αexE0ri22sE0r2dV.
δωω-αexσp20rsE0r2dAE0r2dV,
δωω-αexσs20rsjlk0Rrs2R20Rjlk0rrs2r2dr,
δωω-αexσp0rs-rmR=-αexσp0ns2-nm2R,
δω/ωe=-αexYllπ/2,φ20ns2-nm2R3.

Metrics