Abstract

A comparison between the use of the fringe-side and the frequency-modulation methods to frequency stabilize diode-pumped Tm-Ho:YAG lasers against linear absorption lines of CO2 near 2.1 µm is reported. Frequency stability was evaluated by monitoring of the beat signal between two independently stabilized Tm-Ho:YAG systems. Frequency instability levels of 20 and 400 kHz for 1-s integration time were achieved by the frequency-modulation and fringe-side methods, respectively.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, Opt. Lett. 16, 773 (1991).
    [CrossRef] [PubMed]
  2. T. M. Taczak and D. K. Killinger, Appl. Opt. 37, 8460 (1998).
    [CrossRef]
  3. J. Yu, U. N. Singh, N. P. Barnes, and M. Petros, Opt. Lett. 23, 780 (1998).
    [CrossRef]
  4. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, Appl. Opt. 39, 3664 (2000).
    [CrossRef]
  5. J. E. Bernard, B. G. Whitford, and A. A. Madej, Opt. Commun. 140, 45 (1997).
    [CrossRef]
  6. T. J. Kane and R. W. Wallace, in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 416.
  7. S. W. Henderson and C. P. Hale, Appl. Opt. 29, 1716 (1990).
    [CrossRef] [PubMed]
  8. P. Fritschel, A. Jeffries, and T. Kane, Opt. Lett. 14, 993 (1989).
    [CrossRef] [PubMed]
  9. A. J. Wallard, J. Phys. E 6, 793 (1973).
    [CrossRef]
  10. M. Marano, P. Laporta, A. Sapia, and P. De Natale, Opt. Lett. 25, 1702 (2000).
    [CrossRef]
  11. D. W. Allan, Proc. IEEE 54, 221 (1966).
    [CrossRef]
  12. J. Rutman and F. L. Walls, Proc. IEEE 79, 952 (1991).
    [CrossRef]

2000 (2)

1998 (2)

1997 (1)

J. E. Bernard, B. G. Whitford, and A. A. Madej, Opt. Commun. 140, 45 (1997).
[CrossRef]

1991 (2)

1990 (1)

1989 (1)

1973 (1)

A. J. Wallard, J. Phys. E 6, 793 (1973).
[CrossRef]

1966 (1)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Barnes, N. P.

Bernard, J. E.

J. E. Bernard, B. G. Whitford, and A. A. Madej, Opt. Commun. 140, 45 (1997).
[CrossRef]

De Natale, P.

Dharamsi, A. N.

Fitzgerald, C. M.

Fritschel, P.

Hale, C. P.

Henderson, S. M.

Henderson, S. W.

Huffaker, A. V.

Jeffries, A.

Kane, T.

Kane, T. J.

T. J. Kane and R. W. Wallace, in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 416.

Kavaya, M. J.

Killinger, D. K.

Koch, G. J.

Laporta, P.

Madej, A. A.

J. E. Bernard, B. G. Whitford, and A. A. Madej, Opt. Commun. 140, 45 (1997).
[CrossRef]

Magee, J. R.

Marano, M.

McCarthy, J. C.

Petros, M.

Rutman, J.

J. Rutman and F. L. Walls, Proc. IEEE 79, 952 (1991).
[CrossRef]

Sapia, A.

Singh, U. N.

Taczak, T. M.

Wallace, R. W.

T. J. Kane and R. W. Wallace, in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 416.

Wallard, A. J.

A. J. Wallard, J. Phys. E 6, 793 (1973).
[CrossRef]

Walls, F. L.

J. Rutman and F. L. Walls, Proc. IEEE 79, 952 (1991).
[CrossRef]

Whitford, B. G.

J. E. Bernard, B. G. Whitford, and A. A. Madej, Opt. Commun. 140, 45 (1997).
[CrossRef]

Yu, J.

Appl. Opt. (3)

J. Phys. E (1)

A. J. Wallard, J. Phys. E 6, 793 (1973).
[CrossRef]

Opt. Commun. (1)

J. E. Bernard, B. G. Whitford, and A. A. Madej, Opt. Commun. 140, 45 (1997).
[CrossRef]

Opt. Lett. (4)

Proc. IEEE (2)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

J. Rutman and F. L. Walls, Proc. IEEE 79, 952 (1991).
[CrossRef]

Other (1)

T. J. Kane and R. W. Wallace, in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 416.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the absolute frequency stabilization of the Tm-Ho:YAG lasers. The switches shown in the figure select the locking techniques. PD1–PD3, photodiodes; OA, variable optical attenuator; HVA, high-voltage amplifier; IV, transimpedance amplifier.

Fig. 2
Fig. 2

Experimental measurement of the P32 rovibrational absorption line of CO2 at λ=2091.692 nm.

Fig. 3
Fig. 3

First derivative signal of the P32 line recovered at the lock-in output (modulation frequency, 10 kHz; modulation deviation, 10 MHz).

Fig. 4
Fig. 4

Allan standard deviation of the beat signal versus integration time τ. The dashed curve is the best fit of the experimental data.

Metrics