Abstract

We demonstrate that a highly confined plasma inclusion is formed inside a micrometric water droplet that is excited by a femtosecond laser. An 800-nm laser pulse generates a plasma inclusion by laser-induced breakdown that is subsequently probed by the elastic scattering of a second (400-nm) time-delayed ultrashort pulse. For a 25µm-radius droplet and an incident intensity of 7×1012 W/cm2 the radius of the highly localized plasma is 1.9±0.4 µm. We probed the plasma formation dynamics on femtosecond time scales by varying the delay between the pump and the probe pulses. Good agreement with numerical simulations of the process was found.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
    [CrossRef]
  2. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, Prog. Quantum Electron. 21, 155 (1997).
    [CrossRef]
  3. J. Noack and A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999).
    [CrossRef]
  4. V. Boutou, C. Favre, S. C. Hill, Y.-L. Pan, R. K. Chang, and J. P. Wolf, Appl. Phys. B 75, 145 (2002).
    [CrossRef]
  5. C. A. Sacchi, J. Opt. Soc. Am. B 8, 337 (1991).
    [CrossRef]
  6. W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
    [CrossRef]
  7. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
    [CrossRef] [PubMed]
  8. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, Opt. Express 10, 196 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]

2002

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

V. Boutou, C. Favre, S. C. Hill, Y.-L. Pan, R. K. Chang, and J. P. Wolf, Appl. Phys. B 75, 145 (2002).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, Opt. Express 10, 196 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

2000

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

1999

J. Noack and A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999).
[CrossRef]

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

1997

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, Prog. Quantum Electron. 21, 155 (1997).
[CrossRef]

1991

Boutou, V.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

V. Boutou, C. Favre, S. C. Hill, Y.-L. Pan, R. K. Chang, and J. P. Wolf, Appl. Phys. B 75, 145 (2002).
[CrossRef]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Chang, R. K.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

V. Boutou, C. Favre, S. C. Hill, Y.-L. Pan, R. K. Chang, and J. P. Wolf, Appl. Phys. B 75, 145 (2002).
[CrossRef]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Favre, C.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

V. Boutou, C. Favre, S. C. Hill, Y.-L. Pan, R. K. Chang, and J. P. Wolf, Appl. Phys. B 75, 145 (2002).
[CrossRef]

Fehr, R.

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Gericke, D. O.

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Glezer, E. N.

Hammer, D. X.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, Prog. Quantum Electron. 21, 155 (1997).
[CrossRef]

Hassner, R.

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Hill, S. C.

V. Boutou, C. Favre, S. C. Hill, Y.-L. Pan, R. K. Chang, and J. P. Wolf, Appl. Phys. B 75, 145 (2002).
[CrossRef]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Ishikawa, K.

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, Prog. Quantum Electron. 21, 155 (1997).
[CrossRef]

Kim, A. M. T.

Kingham, R.

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Kraeft, W.-D.

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Krenz, M.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

Lambrecht, H.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

Mazur, E.

Nishimura, N.

Noack, J.

J. Noack and A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999).
[CrossRef]

Pan, Y.-I.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Pan, Y.-L.

V. Boutou, C. Favre, S. C. Hill, Y.-L. Pan, R. K. Chang, and J. P. Wolf, Appl. Phys. B 75, 145 (2002).
[CrossRef]

Ramstein, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Rockwell, B. A.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, Prog. Quantum Electron. 21, 155 (1997).
[CrossRef]

Sacchi, C. A.

Sauerbrey, R.

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Schaffer, C. B.

Schlanges, M.

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Theobald, W.

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Vogel, A.

J. Noack and A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999).
[CrossRef]

Woeste, L.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

Wolf, J. P.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

V. Boutou, C. Favre, S. C. Hill, Y.-L. Pan, R. K. Chang, and J. P. Wolf, Appl. Phys. B 75, 145 (2002).
[CrossRef]

Wolf, J.-P.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Yu, J.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Zimmer, W.

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

Appl. Phys. B

V. Boutou, C. Favre, S. C. Hill, Y.-L. Pan, R. K. Chang, and J. P. Wolf, Appl. Phys. B 75, 145 (2002).
[CrossRef]

IEEE J. Quantum Electron.

J. Noack and A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev. E

W. Theobald, R. Hassner, R. Kingham, R. Sauerbrey, R. Fehr, D. O. Gericke, M. Schlanges, W.-D. Kraeft, and K. Ishikawa, Phys. Rev. E 59, 3544 (1999).
[CrossRef]

Phys. Rev. Lett.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-I. Pan, S. C. Hill, and R. K. Chang, Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J. P. Wolf, Phys. Rev. Lett. 89, 135002 (2002).
[CrossRef]

Prog. Quantum Electron.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, Prog. Quantum Electron. 21, 155 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Calculated evolution of free-electron density ρt for a local (i.e., internal) intensity Ir=6.5×1014/cm2 as a function of t/τ. The duration of the laser pulse is τ=120 fs. The dramatic increase of ρ up to the critical density ρcrit is triggered by multiphoton ionization of water molecules. More than 95% (hatched part of the Gaussian beam) of the laser pulse is absorbed and heats the plasma. (b) Calculated internal distribution of the plasma absorption coefficient (in inverse micrometers) inside the droplet for an incident intensity onto the droplet of Iinc=1×1012 W/cm2. The size of the droplet is given in units of r/a, where a is the droplet radius a=25 µm. This hot-spot region is shown in the inset of (b).

Fig. 2
Fig. 2

Forward scattering of the probe laser λB=405 nm from the microdroplet and its internal plasma inclusion, which is created by the IR pump laser λIR=810 nm. We probe the plasma formation dynamics by varying delay Δt between λB and λIR. (a) λB illuminates the droplet before LIB occurs inside the droplet. Analysis of the elastic-scattering pattern gives the size of the droplet: a=25±1 µm. (b) (c) As soon as λB and λIR overlap, a secondary ring pattern appears, which is representative of elastic scattering on the internal plasma inclusion. Interfringe analysis provides the size of the inclusion: 1.9±0.4 µm, i.e., 0.075 a.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

αre2τc/mcn01+ωτc2Ir,tρr,tdtIr,tdt,

Metrics