Abstract

We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2×2 coupler in a Sagnac configuration. The equations that describe the device’s operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
    [CrossRef]
  2. K.-H. Park, T. Mizumoto, A. Matsuura, and Y. Naito, IEEE J. Lightwave Technol. 16, 1129 (1998).
    [CrossRef]
  3. T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
    [CrossRef]
  4. X. Fang, K. Demarest, J. Helin, C. Allen, and L. Pelz, IEEE Photon. Technol. Lett. 9, 1490 (1997).
    [CrossRef]
  5. T. Yamamoto, E. Yoshida, and M. Nakazawa, Electron. Lett. 34, 1013 (1998).
    [CrossRef]
  6. M. K. Smit and C. Van Dam, IEEE J. Sel. Top. Quantum. Electron. 6, 282 (1996).
  7. K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, Calif., 2000).

1999

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

1998

K.-H. Park, T. Mizumoto, A. Matsuura, and Y. Naito, IEEE J. Lightwave Technol. 16, 1129 (1998).
[CrossRef]

T. Yamamoto, E. Yoshida, and M. Nakazawa, Electron. Lett. 34, 1013 (1998).
[CrossRef]

1997

X. Fang, K. Demarest, J. Helin, C. Allen, and L. Pelz, IEEE Photon. Technol. Lett. 9, 1490 (1997).
[CrossRef]

1996

M. K. Smit and C. Van Dam, IEEE J. Sel. Top. Quantum. Electron. 6, 282 (1996).

1991

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
[CrossRef]

Allen, C.

X. Fang, K. Demarest, J. Helin, C. Allen, and L. Pelz, IEEE Photon. Technol. Lett. 9, 1490 (1997).
[CrossRef]

Avramopoulos, H.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Blow, K. J.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
[CrossRef]

Burkhard, H.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Constantine, P. D.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
[CrossRef]

Dall’Ara, R.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Demarest, K.

X. Fang, K. Demarest, J. Helin, C. Allen, and L. Pelz, IEEE Photon. Technol. Lett. 9, 1490 (1997).
[CrossRef]

Doran, N. J.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
[CrossRef]

Fang, X.

X. Fang, K. Demarest, J. Helin, C. Allen, and L. Pelz, IEEE Photon. Technol. Lett. 9, 1490 (1997).
[CrossRef]

Girardin, F.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Guekos, G.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Hansmann, S.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Helin, J.

X. Fang, K. Demarest, J. Helin, C. Allen, and L. Pelz, IEEE Photon. Technol. Lett. 9, 1490 (1997).
[CrossRef]

Houbavlis, T.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Lucek, J. K.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
[CrossRef]

Marshall, I. W.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
[CrossRef]

Matsuura, A.

K.-H. Park, T. Mizumoto, A. Matsuura, and Y. Naito, IEEE J. Lightwave Technol. 16, 1129 (1998).
[CrossRef]

Mizumoto, T.

K.-H. Park, T. Mizumoto, A. Matsuura, and Y. Naito, IEEE J. Lightwave Technol. 16, 1129 (1998).
[CrossRef]

Naito, Y.

K.-H. Park, T. Mizumoto, A. Matsuura, and Y. Naito, IEEE J. Lightwave Technol. 16, 1129 (1998).
[CrossRef]

Nakazawa, M.

T. Yamamoto, E. Yoshida, and M. Nakazawa, Electron. Lett. 34, 1013 (1998).
[CrossRef]

Nelson, B. P.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, Calif., 2000).

Papakyriakopoulos, T.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Park, K.-H.

K.-H. Park, T. Mizumoto, A. Matsuura, and Y. Naito, IEEE J. Lightwave Technol. 16, 1129 (1998).
[CrossRef]

Pelz, L.

X. Fang, K. Demarest, J. Helin, C. Allen, and L. Pelz, IEEE Photon. Technol. Lett. 9, 1490 (1997).
[CrossRef]

Smit, M. K.

M. K. Smit and C. Van Dam, IEEE J. Sel. Top. Quantum. Electron. 6, 282 (1996).

Smith, K.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
[CrossRef]

Van Dam, C.

M. K. Smit and C. Van Dam, IEEE J. Sel. Top. Quantum. Electron. 6, 282 (1996).

Vlachos, K.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Yamamoto, T.

T. Yamamoto, E. Yoshida, and M. Nakazawa, Electron. Lett. 34, 1013 (1998).
[CrossRef]

Yoshida, E.

T. Yamamoto, E. Yoshida, and M. Nakazawa, Electron. Lett. 34, 1013 (1998).
[CrossRef]

Zoiros, K.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

Electron. Lett.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, Electron. Lett. 27, 704 (1991).
[CrossRef]

T. Yamamoto, E. Yoshida, and M. Nakazawa, Electron. Lett. 34, 1013 (1998).
[CrossRef]

IEEE J. Lightwave Technol.

K.-H. Park, T. Mizumoto, A. Matsuura, and Y. Naito, IEEE J. Lightwave Technol. 16, 1129 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron.

M. K. Smit and C. Van Dam, IEEE J. Sel. Top. Quantum. Electron. 6, 282 (1996).

IEEE Photon. Technol. Lett.

T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Girardin, G. Guekos, R. Dall’Ara, S. Hansmann, and H. Burkhard, IEEE Photon. Technol. Lett. 11, 334 (1999).
[CrossRef]

X. Fang, K. Demarest, J. Helin, C. Allen, and L. Pelz, IEEE Photon. Technol. Lett. 9, 1490 (1997).
[CrossRef]

Other

K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, Calif., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the AWSI.

Fig. 2
Fig. 2

Experimental schematic for characterization of the AWSI in passive operation: SLED, superluminescent light-emitting dipole; OSA, optical spectrum analyzer; VC, variable fiber coupler.

Fig. 3
Fig. 3

AWSI operation in the passive regime: device transmission for k=1 and device reflection for k=0.5.

Fig. 4
Fig. 4

Measured normalized (to the maximum value) spectral band corresponding to the AWG transmittance (i.e., with no Sagnac configuration) and the AWG Sagnac transmittance for channel 17 (1548 nm) in the experiment.

Fig. 5
Fig. 5

Schematic of the operation of an AWSI as a reconfigurable WDM add–drop multiplexer activated by electronic control signals applied to SOAs inserted into its cavities.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

IT= ET2=i=1NIin,iAoi2Toi2w1-2k1-k×1+cosφicw-φiccw= i=1NIin,iAoi2T2w-wi1-2k1-k×1+cosφicw-φiccw,
IR=ER2=2k1-ki=1NIin,iAoi2Toi2w×1+cosφicw-φiccw=2k1-ki=1NIin,iAoi2T2w-wi×1+cosφicw-φiccw},
IT=12i=1NIin,iAoi2T2w-wi1-cosφicw-φiccw,
IR=12i=1NIin,iAoi2T2w-wi1+cosφicw-φiccw,
IT=1-4k1-ki=1,3,17,26,35Iin,iT2w-wi,
IR=4k1-ki=1,3,17,26,35Iin,iT2w-wi.

Metrics