Abstract

The anomalous-diffraction theory (ADT) of extinction of light by soft particles is shown to be determined by a statistical distribution of the geometrical paths of individual rays inside the particles. Light extinction depends on the mean and the mean-squared geometrical paths of the rays. Analytical formulas for optical efficiencies from a Gaussian distribution of the geometrical paths of rays are derived. This Gaussian ray approximation reduces to the exact ADT in the intermediate case of light scattering for an arbitrary soft particle and describes well the extinction of light from a system of randomly oriented and (or) polydisperse particles. The implications for probing of the sizes and shapes of particles by light extinction are discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription