Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transverse Bragg resonance laser amplifier

Not Accessible

Your library or personal account may give you access

Abstract

We propose and analyze a new type of optical amplifier that is formed by addition of gain in the periodic cladding of a transverse Bragg resonance waveguide [Opt. Lett. 27, 936 (2002)]. Using the coupled-wave formalism, we calculate the mode profiles, the exponential gain constant, and, for comparison, the gain enhancement compared with those of conventional semiconductor optical amplifiers. In contrast with coupled-mode theory, in one-dimensional structures (e.g., the distributed-feedback laser) the exponential gain constant in the longitudinal direction is involved in both longitudinal and transverse confinement, and its solution has to be achieved self-consistently, together with the quantized guiding channel width.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Engineering transverse Bragg resonance waveguides for large modal volume lasers

Wei Liang, Yong Xu, John M. Choi, and Amnon Yariv
Opt. Lett. 28(21) 2079-2081 (2003)

Two-dimensional optical ring resonators based on radial Bragg resonance

Jacob Scheuer and Amnon Yariv
Opt. Lett. 28(17) 1528-1530 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved