Abstract

A computer-generated hologram with minimum spatial complexity is proposed for encoding arbitrary complex transmittance with low-resolution phase-modulation devices. The phase modulation of the proposed hologram is determined such that on-axis reconstruction with high signal-to-noise ratio, optimum reconstruction efficiency, and the largest possible signal bandwidth can be obtained.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Kirk and A. L. Jones, J. Opt. Soc. Am. 61, 1023 (1971).
  2. R. W. Cohn and M. Liang, Appl. Opt. 33, 4406 (1994).
    [CrossRef] [PubMed]
  3. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999).
    [CrossRef]
  4. V. Arrizón, Opt. Lett. 27, 595 (2002).
    [CrossRef]
  5. C. K. Hsueh and A. A. Sawchuk, Appl. Opt. 17, 3874 (1978).
    [CrossRef] [PubMed]

2002 (1)

1999 (1)

1994 (1)

1978 (1)

1971 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Unitary complex circle showing complex vector cnm and the two possible phasors (hnm1 and hnm2) that can encode it.

Fig. 2
Fig. 2

(a) Gray-map representation of the CGH phase modulation (in radians) encoding complex transmittance A2πrJ02πrexpiθ. (b) A portion of the corresponding Fourier domain intensity distribution.

Fig. 3
Fig. 3

(a) Extended reconstruction field for the CGH in Fig. 2. (b) Modified reconstruction field when dnm=1 (for every CGH pixel).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

hx,y=n,mexpiψnmwx-np,y-mq,
cx,y=n,mcnmwx-np,y-mq,
hx,y=cx,y+ex,y,
ex,y=bx,ygx,y,
expiψnm=cnm+-1n+mgnm.
cnm+gnm2=cnm-gnm2=1.
τnm=ϕnm+dnmπ/2,
ψnm=ϕnm+-1n+mdnm cos-1cnm.
dnm=1rnm0-1rnm<0.

Metrics