Abstract

We demonstrate all-optical switching action in a nonlinear photonic crystal cross-waveguide geometry with instantaneous Kerr nonlinearity, in which the transmission of a signal can be reversibly switched on and off by a control input. Our geometry accomplishes both spatial and spectral separation between the signal and the control in the nonlinear regime. The device occupies a small footprint of a few micrometers squared and requires only a few milliwatts of power at a 10-Gbit/s switching rate by use of Kerr nonlinearity in AlGaAs below half the electronic bandgap. We also show that the switching dynamics, as revealed by both coupled-mode theory and finite-difference time domain simulations, exhibits collective behavior that can be exploited to generate high-contrast logic levels and all-optical memory.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Centeno and D. Felbacq, Phys. Rev. B 62, R7683 (2000).
    [CrossRef]
  2. S. F. Mingaleev and Y. S. Kivshar, J. Opt. Soc. Am. B 19, 2241 (2002).
    [CrossRef]
  3. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, Phys. Rev. E 66, 55601 (R) (2002).
    [CrossRef]
  4. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003).
    [CrossRef]
  5. M. F. Yanik, S. Fan, and M. Soljacic, Appl. Phys. Lett. 83, 2739 (2003).
    [CrossRef]
  6. S. Scholz, O. Hess, and R. Rühle, Opt. Express 3, 28 (1998), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  7. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Opt. Lett. 23, 1855 (1998).
    [CrossRef]
  8. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984).
  9. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, Norwood, Mass., 2000).
  10. M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).
    [CrossRef]
  11. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. Lin, and H. Lin, J. Appl. Phys. 62, 2465 (1993).
  12. K. Srinivasan and O. Painter, Opt. Express 10, 670 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]

2003 (2)

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

2002 (3)

2000 (2)

E. Centeno and D. Felbacq, Phys. Rev. B 62, R7683 (2000).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, Norwood, Mass., 2000).

1998 (2)

1993 (1)

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. Lin, and H. Lin, J. Appl. Phys. 62, 2465 (1993).

1992 (1)

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).
[CrossRef]

1984 (1)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984).

Centeno, E.

E. Centeno and D. Felbacq, Phys. Rev. B 62, R7683 (2000).
[CrossRef]

Fan, S.

Felbacq, D.

E. Centeno and D. Felbacq, Phys. Rev. B 62, R7683 (2000).
[CrossRef]

Fink, Y.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, Phys. Rev. E 66, 55601 (R) (2002).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, Norwood, Mass., 2000).

Haus, H. A.

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Opt. Lett. 23, 1855 (1998).
[CrossRef]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984).

Hess, O.

Hobson, W. S.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).
[CrossRef]

Ibanescu, M.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, Phys. Rev. E 66, 55601 (R) (2002).
[CrossRef]

Islam, M. N.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, Phys. Rev. E 66, 55601 (R) (2002).
[CrossRef]

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, Opt. Lett. 23, 1855 (1998).
[CrossRef]

Kivshar, Y. S.

Levi, A. F. J.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).
[CrossRef]

Lin, C.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. Lin, and H. Lin, J. Appl. Phys. 62, 2465 (1993).

Lin, H.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. Lin, and H. Lin, J. Appl. Phys. 62, 2465 (1993).

Luo, C.

Manolatou, C.

Mingaleev, S. F.

Painter, O.

Rühle, R.

Scholz, S.

Slusher, R. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).
[CrossRef]

Soccolich, C. E.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).
[CrossRef]

Soljacic, M.

M. F. Yanik, S. Fan, and M. Soljacic, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, Phys. Rev. E 66, 55601 (R) (2002).
[CrossRef]

Srinivasan, K.

Stegeman, G. I.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. Lin, and H. Lin, J. Appl. Phys. 62, 2465 (1993).

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, Norwood, Mass., 2000).

Villeneuve, A.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. Lin, and H. Lin, J. Appl. Phys. 62, 2465 (1993).

Villeneuve, P. R.

Yang, C. C.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. Lin, and H. Lin, J. Appl. Phys. 62, 2465 (1993).

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljacic, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Young, M. G.

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

M. F. Yanik, S. Fan, and M. Soljacic, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

J. Appl. Phys. (2)

M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).
[CrossRef]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. Lin, and H. Lin, J. Appl. Phys. 62, 2465 (1993).

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

E. Centeno and D. Felbacq, Phys. Rev. B 62, R7683 (2000).
[CrossRef]

Phys. Rev. E (1)

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, Phys. Rev. E 66, 55601 (R) (2002).
[CrossRef]

Other (2)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984).

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, Norwood, Mass., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Electric field distributions in a photonic crystal cross-waveguide switch. (a) Control input PinY is absent, and signal output PoutX is low. (b) Control input PinY is present, and signal output PoutX is high. The control and signal power are both 200 mW/µm. Red and blue represent large positive or negative electric fields, respectively. The same color scale is used for both panels. The black circles indicate the positions of the dielectric rods in the photonic crystal.

Fig. 2
Fig. 2

Input versus output power for the signal in waveguide X, calculated with Eq. (1), with the output power in waveguide Y (and hence the energy in cavity mode Y) kept at constant levels. Blue, red, and green curves correspond to control output powers of 0, 151, and 75 mW/µm, respectively, which is appropriate for various times in the switching process, as shown in Fig. 3.

Fig. 3
Fig. 3

Input and output power levels for the signal and the control as a function of time. The curves are from coupled-mode theory calculations with Eqs. (1) and (2), and the open circles and triangles are from FDTD simulations. The labels A, B, and B indicate the control output power levels that were used to calculate the bistability curves in Fig. 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dSoutXdt=iωXSoutX-iγXSoutX2PXX+2SoutY2PXYSoutX+γXSinX-SoutX-iγXSoutY2PXYSoutX*,
dSoutYdt=iωYSoutY-iγYSoutY2PYY+2SoutX2PYXSoutY+γYSinY-SoutY-iγYSoutX2PYXSoutY*.
αij=cωidvolddrEir·Ejr2+2Eir·Ej*r2n2rn2rvolddrEir2n2rvolddrEjr2n2rn2rmax,

Metrics