Abstract

An analysis of the tunable superprism effect in a two-dimensional nonlinear photonic crystal is presented. We show that, by shifting the photonic bands of the crystal through the Kerr effect induced by a pump beam, one can tune the refraction angle of a transmitted signal beam over tens of degrees. We also demonstrate that the optical power required to tune the refracted angle is dramatically reduced if the frequency of the pump beam is close to a bandgap edge.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, Opt. Lett. 21, 1771 (1996).
    [CrossRef] [PubMed]
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, J. Lightwave Technol. 17, 2032 (1999).
    [CrossRef]
  3. T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
    [CrossRef]
  4. K. B. Chung and S. W. Hong, Appl. Phys. Lett. 81, 1549 (2002).
    [CrossRef]
  5. K. Bush and S. John, Phys. Rev. Lett. 83, 967 (1999).
    [CrossRef]
  6. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Appl. Phys. Lett. 75, 932 (1999).
    [CrossRef]
  7. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003).
    [CrossRef]
  8. M. Bahl, N. C. Panoiu, and R. M. Osgood, Phys. Rev. E 67, 056604 (2003).
    [CrossRef]
  9. K. M. Ho, K. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
    [CrossRef] [PubMed]
  10. V. Lousse and J. P. Vigneron, Phys. Rev. E 63, 027602 (2001).
    [CrossRef]
  11. M. Straub, M. Ventura, and M. Gu, Phys. Rev. Lett. 91, 043901 (2003).
    [CrossRef]
  12. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).
    [CrossRef] [PubMed]

2003

M. Bahl, N. C. Panoiu, and R. M. Osgood, Phys. Rev. E 67, 056604 (2003).
[CrossRef]

M. Straub, M. Ventura, and M. Gu, Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef]

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003).
[CrossRef]

2002

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

K. B. Chung and S. W. Hong, Appl. Phys. Lett. 81, 1549 (2002).
[CrossRef]

2001

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).
[CrossRef] [PubMed]

V. Lousse and J. P. Vigneron, Phys. Rev. E 63, 027602 (2001).
[CrossRef]

1999

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, J. Lightwave Technol. 17, 2032 (1999).
[CrossRef]

K. Bush and S. John, Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Appl. Phys. Lett. 75, 932 (1999).
[CrossRef]

1996

1990

K. M. Ho, K. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
[CrossRef] [PubMed]

Baba, T.

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Bahl, M.

M. Bahl, N. C. Panoiu, and R. M. Osgood, Phys. Rev. E 67, 056604 (2003).
[CrossRef]

Bo, X. Z.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).
[CrossRef] [PubMed]

Bush, K.

K. Bush and S. John, Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

Chan, K. T.

K. M. Ho, K. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
[CrossRef] [PubMed]

Chung, K. B.

K. B. Chung and S. W. Hong, Appl. Phys. Lett. 81, 1549 (2002).
[CrossRef]

Fan, S.

Gu, M.

M. Straub, M. Ventura, and M. Gu, Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef]

Hietala, V. M.

Ho, K. M.

K. M. Ho, K. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
[CrossRef] [PubMed]

Hong, S. W.

K. B. Chung and S. W. Hong, Appl. Phys. Lett. 81, 1549 (2002).
[CrossRef]

Joannopoulos, J. D.

John, S.

K. Bush and S. John, Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

Jones, E. D.

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Appl. Phys. Lett. 75, 932 (1999).
[CrossRef]

Kawakami, S.

Kawashima, T.

Kosaka, H.

Lin, S. Y.

Lousse, V.

V. Lousse and J. P. Vigneron, Phys. Rev. E 63, 027602 (2001).
[CrossRef]

Luo, C.

Nakamura, M.

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Appl. Phys. Lett. 75, 932 (1999).
[CrossRef]

Norris, D. J.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).
[CrossRef] [PubMed]

Notomi, M.

Osgood, R. M.

M. Bahl, N. C. Panoiu, and R. M. Osgood, Phys. Rev. E 67, 056604 (2003).
[CrossRef]

Ozaki, M.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Appl. Phys. Lett. 75, 932 (1999).
[CrossRef]

Panoiu, N. C.

M. Bahl, N. C. Panoiu, and R. M. Osgood, Phys. Rev. E 67, 056604 (2003).
[CrossRef]

Sato, T.

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Appl. Phys. Lett. 75, 932 (1999).
[CrossRef]

Soljacic, M.

Soukoulis, C. M.

K. M. Ho, K. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
[CrossRef] [PubMed]

Straub, M.

M. Straub, M. Ventura, and M. Gu, Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef]

Sturm, J. C.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).
[CrossRef] [PubMed]

Tamamura, T.

Tomita, A.

Ventura, M.

M. Straub, M. Ventura, and M. Gu, Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef]

Vigneron, J. P.

V. Lousse and J. P. Vigneron, Phys. Rev. E 63, 027602 (2001).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).
[CrossRef] [PubMed]

Wang, L.

Yoshino, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Appl. Phys. Lett. 75, 932 (1999).
[CrossRef]

Appl. Phys. Lett.

K. B. Chung and S. W. Hong, Appl. Phys. Lett. 81, 1549 (2002).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Appl. Phys. Lett. 75, 932 (1999).
[CrossRef]

IEEE J. Quantum Electron.

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

J. Lightwave Technol.

Nature

Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, Nature 414, 289 (2001).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. E

M. Bahl, N. C. Panoiu, and R. M. Osgood, Phys. Rev. E 67, 056604 (2003).
[CrossRef]

Phys. Rev. E

V. Lousse and J. P. Vigneron, Phys. Rev. E 63, 027602 (2001).
[CrossRef]

Phys. Rev. Lett.

M. Straub, M. Ventura, and M. Gu, Phys. Rev. Lett. 91, 043901 (2003).
[CrossRef]

K. M. Ho, K. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
[CrossRef] [PubMed]

K. Bush and S. John, Phys. Rev. Lett. 83, 967 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic design of a device based on an optically controlled superprism effect in a PC.

Fig. 2
Fig. 2

PBS of the TE modes for an air hole hexagonal PC at P=0. Inset, band corresponding to the signal frequency ωs calculated for P=0 (solid curve) and P/a=1 GW/cm2. In the latter case the pump frequency is ωp=0.15 (dotted–dashed curve) and ωp=0.21 (dashed curve).

Fig. 3
Fig. 3

Equifrequency dispersion curves for ωs=0.672 at P=0 (solid curve) and P0 (dashed curve). The dotted–dashed line and the dotted circle represent the input facet of the PC and the dispersion curve of the air modes, respectively.

Fig. 4
Fig. 4

Refraction angle θr versus the pump intensity P/a. The solid curve shows θr versus P/a for the case in which only the signal beam is present (see text for details).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P=ϵ0ϵrEkr2vgka/2.

Metrics