Abstract

A simple method for the calibration of optical path difference modulation in low-coherence interferometry is presented. Spectrally filtering a part of the detected interference signal results in a high-coherence signal that encodes the scan imperfections and permits their correction. The method is self-referenced in the sense that no secondary high-coherence light source is necessary. Using a spectrometer setup for spectral filtering allows for flexibility in both the choice of calibration wavelength and the maximum scan range. To demonstrate the method’s usefulness, it is combined with a recently published digital spectral shaping technique to measure the thickness of a pellicle beam splitter with a white-light source.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, IEEE Photon. Technol. Lett. 3, 564 (1991).
    [CrossRef]
  2. G. F. Lindgren, R. P. Salathe, and R. Waelti, “Method and device for measuring the optical properties of transparent and/or diffusive objects,” German patent WO9922198-A1 (May 6, 1999).
  3. J. Schmit and A. Olszak, Appl. Opt. 41, 5943 (2002).
    [CrossRef] [PubMed]
  4. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, Opt. Lett. 27, 406 (2002).
    [CrossRef]
  5. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
    [CrossRef]

2002 (2)

1995 (1)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

1991 (1)

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, IEEE Photon. Technol. Lett. 3, 564 (1991).
[CrossRef]

de Boer, J. F.

Kobayashi, M.

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, IEEE Photon. Technol. Lett. 3, 564 (1991).
[CrossRef]

Lindgren, G. F.

G. F. Lindgren, R. P. Salathe, and R. Waelti, “Method and device for measuring the optical properties of transparent and/or diffusive objects,” German patent WO9922198-A1 (May 6, 1999).

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

Nassif, N.

Nelson, J. S.

Noda, J.

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, IEEE Photon. Technol. Lett. 3, 564 (1991).
[CrossRef]

Olszak, A.

Park, B. H.

Salathe, R. P.

G. F. Lindgren, R. P. Salathe, and R. Waelti, “Method and device for measuring the optical properties of transparent and/or diffusive objects,” German patent WO9922198-A1 (May 6, 1999).

Schmit, J.

Takada, K.

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, IEEE Photon. Technol. Lett. 3, 564 (1991).
[CrossRef]

Taylor, H. F.

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, IEEE Photon. Technol. Lett. 3, 564 (1991).
[CrossRef]

Tripathi, R.

Waelti, R.

G. F. Lindgren, R. P. Salathe, and R. Waelti, “Method and device for measuring the optical properties of transparent and/or diffusive objects,” German patent WO9922198-A1 (May 6, 1999).

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, IEEE Photon. Technol. Lett. 3, 564 (1991).
[CrossRef]

Opt. Lett. (1)

Other (2)

G. F. Lindgren, R. P. Salathe, and R. Waelti, “Method and device for measuring the optical properties of transparent and/or diffusive objects,” German patent WO9922198-A1 (May 6, 1999).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical setup. L, lens; BS, beam splitter; D, diameter of the beam-limiting diaphragm; F1, multimode fiber; F2, monomode fiber playing the role of a pinhole; P1, P2, photo detectors for measurement signal s and calibration signal c, respectively.

Fig. 2
Fig. 2

Spectra obtained by Fourier transformation of the interferogram of a mirror (top) without scan correction and (bottom) with scan correction compared with (middle inset) the original source spectrum.

Fig. 3
Fig. 3

Application of the spectral-shaping technique to pellicle beam splitter measurement. a, Original signal s. b, Spectral-shaping technique applied to uncalibrated measurement. c, Spectral-shaping technique applied to calibrated measurement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

lc=kλ2Δλ,
lc=kλGD,

Metrics