Abstract

We describe confocal self-interference microscopy with enhanced lateral resolution. A uniaxial anisotropic crystal is used to cause interference between two linearly polarized beams that are reflected from the same pointlike object in the focal plane of the objective lens. Theory and the optimal design that maximizes the sensitivity of the interference signal are presented. A numerical experiment shows a 38% decrease in the lateral FWHM for simple confocal self-interference microscopy.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley, Handbook of Biological and Confocal Microscopy (Plenum, New York, 1995).
  2. C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
    [CrossRef]
  3. M. Vaez-Iravani and D. I. Kavaldjiev, Ultramicroscopy 61, 105 (1995).
    [CrossRef]
  4. C. J. R. Sheppard, Opt. Lett. 24, 505 (1999).
    [CrossRef]
  5. M. A. A. Neil, R. Juskaitis, T. Wilson, and Z. J. Laczik, Opt. Lett. 25, 245 (2000).
    [CrossRef]
  6. S. W. Hell, M. Schrader, and H. T. M. Van Der Voort, J. Microsc. 187, 1 (1997).
    [CrossRef] [PubMed]
  7. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, England, 1999).
    [CrossRef]
  8. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

2000

1999

C. J. R. Sheppard, Opt. Lett. 24, 505 (1999).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, England, 1999).
[CrossRef]

1997

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

S. W. Hell, M. Schrader, and H. T. M. Van Der Voort, J. Microsc. 187, 1 (1997).
[CrossRef] [PubMed]

1996

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

1995

J. B. Pawley, Handbook of Biological and Confocal Microscopy (Plenum, New York, 1995).

M. Vaez-Iravani and D. I. Kavaldjiev, Ultramicroscopy 61, 105 (1995).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, England, 1999).
[CrossRef]

Gu, M.

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

Hell, S. W.

S. W. Hell, M. Schrader, and H. T. M. Van Der Voort, J. Microsc. 187, 1 (1997).
[CrossRef] [PubMed]

Juskaitis, R.

Kavaldjiev, D. I.

M. Vaez-Iravani and D. I. Kavaldjiev, Ultramicroscopy 61, 105 (1995).
[CrossRef]

Laczik, Z. J.

Lee, C.-H.

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

Neil, M. A. A.

Pawley, J. B.

J. B. Pawley, Handbook of Biological and Confocal Microscopy (Plenum, New York, 1995).

Schrader, M.

S. W. Hell, M. Schrader, and H. T. M. Van Der Voort, J. Microsc. 187, 1 (1997).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Vaez-Iravani, M.

M. Vaez-Iravani and D. I. Kavaldjiev, Ultramicroscopy 61, 105 (1995).
[CrossRef]

Van Der Voort, H. T. M.

S. W. Hell, M. Schrader, and H. T. M. Van Der Voort, J. Microsc. 187, 1 (1997).
[CrossRef] [PubMed]

Wang, J.

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

Wilson, T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, England, 1999).
[CrossRef]

J. Microsc.

S. W. Hell, M. Schrader, and H. T. M. Van Der Voort, J. Microsc. 187, 1 (1997).
[CrossRef] [PubMed]

Opt. Commun.

C.-H. Lee and J. Wang, Opt. Commun. 135, 233 (1997).
[CrossRef]

Opt. Lett.

Ultramicroscopy

M. Vaez-Iravani and D. I. Kavaldjiev, Ultramicroscopy 61, 105 (1995).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, Cambridge, England, 1999).
[CrossRef]

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996).

J. B. Pawley, Handbook of Biological and Confocal Microscopy (Plenum, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical schematic of CSIM. PMT, photomultiplier tube; QWP, quarter-wave plate; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Optical pathway through the CW.

Fig. 3
Fig. 3

Sensitivity of the change in the OPD as a function of the incidence angle. The thickness of the CW is the 5 mm, and the refractive indices are 1.4852 and 1.6556 for the extraordinary and the ordinary axes, respectively.

Fig. 4
Fig. 4

Calculated PSFs of (a) conventional confocal microscopy and CSIM with a CW thickness of (b) 5 mm and (c) 10 mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔS=n2cos θ2-n1cos θ1+tan θ1-tan θ2sin θincd,
θinc=cos-1xM/fOLsin θwp+cos θwpxM/fOL2+yM/fOL2+12,
Iinterx,y=I1+I2+2I1I2 cos2πλΔS,
Ix,y=Iillux,y×Iinterx,y×Idetx,y,

Metrics