Abstract

The dynamical behavior of cw-pumped Raman fiber lasers is studied experimentally. Lasers made of standard single-mode fibers are found to present unstable behaviors depending on the states of polarization of the Stokes and pump fields. On the contrary, lasers made of polarization-maintaining fibers are found to be always stable. The observed behaviors suggest that birefringence- and Kerr-induced changes in polarization states dramatically affect Raman fiber lasers dynamics.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasiliev, and O. I. Medvedkov, Opt. Lett. 25, 402 (2000).
    [CrossRef]
  2. C. Kim, R. M. Sova, and J. U. Kang, Opt. Commun. 218, 291 (2003).
    [CrossRef]
  3. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Opt. Commun. 182, 403 (2000).
    [CrossRef]
  4. M. Rini, I. Cristiani, and V. Degiorgio, IEEE J. Quantum Electron. 36, 1117 (2000).
    [CrossRef]
  5. M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, and V. M. Paramonov, Opt. Commun. 203, 139 (2002).
    [CrossRef]
  6. S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 217, 233 (2003).
    [CrossRef]
  7. Q. Lin and G. P. Agrawal, Opt. Lett. 28, 227 (2003).
    [CrossRef] [PubMed]
  8. J. AuYeung and A. Yariv, J. Opt. Soc. Am. 69, 803 (1979).

2003 (3)

C. Kim, R. M. Sova, and J. U. Kang, Opt. Commun. 218, 291 (2003).
[CrossRef]

S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 217, 233 (2003).
[CrossRef]

Q. Lin and G. P. Agrawal, Opt. Lett. 28, 227 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, and V. M. Paramonov, Opt. Commun. 203, 139 (2002).
[CrossRef]

2000 (3)

E. M. Dianov, I. A. Bufetov, M. M. Bubnov, M. V. Grekov, S. A. Vasiliev, and O. I. Medvedkov, Opt. Lett. 25, 402 (2000).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Opt. Commun. 182, 403 (2000).
[CrossRef]

M. Rini, I. Cristiani, and V. Degiorgio, IEEE J. Quantum Electron. 36, 1117 (2000).
[CrossRef]

1979 (1)

Agrawal, G. P.

AuYeung, J.

Brinkmeyer, E.

S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 217, 233 (2003).
[CrossRef]

Bubnov, M. M.

Bufetov, I. A.

Chernikov, S. V.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Opt. Commun. 182, 403 (2000).
[CrossRef]

Cierullies, S.

S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 217, 233 (2003).
[CrossRef]

Cristiani, I.

M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, and V. M. Paramonov, Opt. Commun. 203, 139 (2002).
[CrossRef]

M. Rini, I. Cristiani, and V. Degiorgio, IEEE J. Quantum Electron. 36, 1117 (2000).
[CrossRef]

Degiorgio, V.

M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, and V. M. Paramonov, Opt. Commun. 203, 139 (2002).
[CrossRef]

M. Rini, I. Cristiani, and V. Degiorgio, IEEE J. Quantum Electron. 36, 1117 (2000).
[CrossRef]

Dianov, E. M.

Grekov, M. V.

Kang, J. U.

C. Kim, R. M. Sova, and J. U. Kang, Opt. Commun. 218, 291 (2003).
[CrossRef]

Kim, C.

C. Kim, R. M. Sova, and J. U. Kang, Opt. Commun. 218, 291 (2003).
[CrossRef]

Kurkov, A. S.

M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, and V. M. Paramonov, Opt. Commun. 203, 139 (2002).
[CrossRef]

Lewis, S. A. E.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Opt. Commun. 182, 403 (2000).
[CrossRef]

Lin, Q.

Medvedkov, O. I.

Paramonov, V. M.

M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, and V. M. Paramonov, Opt. Commun. 203, 139 (2002).
[CrossRef]

Renner, H.

S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 217, 233 (2003).
[CrossRef]

Rini, M.

M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, and V. M. Paramonov, Opt. Commun. 203, 139 (2002).
[CrossRef]

M. Rini, I. Cristiani, and V. Degiorgio, IEEE J. Quantum Electron. 36, 1117 (2000).
[CrossRef]

Sova, R. M.

C. Kim, R. M. Sova, and J. U. Kang, Opt. Commun. 218, 291 (2003).
[CrossRef]

Taylor, J. R.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Opt. Commun. 182, 403 (2000).
[CrossRef]

Vasiliev, S. A.

Yariv, A.

IEEE J. Quantum Electron. (1)

M. Rini, I. Cristiani, and V. Degiorgio, IEEE J. Quantum Electron. 36, 1117 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (4)

C. Kim, R. M. Sova, and J. U. Kang, Opt. Commun. 218, 291 (2003).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Opt. Commun. 182, 403 (2000).
[CrossRef]

M. Rini, I. Cristiani, V. Degiorgio, A. S. Kurkov, and V. M. Paramonov, Opt. Commun. 203, 139 (2002).
[CrossRef]

S. Cierullies, H. Renner, and E. Brinkmeyer, Opt. Commun. 217, 233 (2003).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: L1, telescope; L2, microscope objective; EOM, electro-optic modulator; HWP, half-wave plate; PC1, PC2, polarization controllers for injected pump and Stokes waves, respectively; FBG1, FBG2, fiber Bragg gratings; GP, glass plate.

Fig. 2
Fig. 2

Experimental characteristics of the SF Raman laser. Switching from unstable behavior (a), (b) to stable behavior (c), (d) is achieved by rotating the pump field polarization by 45°. Theoretical characteristics of the laser (dashed curves) are computed from the following: Raman gain are 7 dB km-1 W-1, pump losses are 1 dB km-1, Stokes losses are 0.9 dB km-1, R1=99.8%, and R2=80%.

Fig. 3
Fig. 3

Typical experimental self-oscillations in the SF Raman laser. Instabilities recorded for pump powers between 1 and 1.3 W. (a) Slow oscillations. (b) Round-trip oscillations superimposed on slow oscillations. (c) Fast oscillations alone (5 times faster than round-trip time).

Fig. 4
Fig. 4

Experimental characteristics of PMF Raman laser. Switch from (a) to (b) is achieved by rotating the pump field polarization by 45°. The theoretical curves (dashed curves) are identical to those in Fig. 2.

Metrics