Abstract

We consider the combined effects of amplified spontaneous emission noise, optical Kerr nonlinearity, and chromatic dispersion on phase noise in an optical communication system. The effect of amplified spontaneous emission noise and Kerr nonlinearity were considered previously by Gordon and Mollenauer [Opt. Lett. 15, 1351 (1990)], and the effect of nonlinearity was found to be severe. We investigate the effect of chromatic dispersion on phase noise and show that it can either enhance or suppress the nonlinear noise amplification. For large absolute values of dispersion the nonlinear effect is suppressed, and the phase noise is reduced to its linear value. For a range of negative values of dispersion, however, nonlinear phase noise is enhanced and exhibits a maximum related to the modulation instability found in amplitude fluctuations. Nonlinear phase noise is quenched by these effects even in dispersion-compensated systems; the degree of suppression is sensitively dependent on the dispersion map. We demonstrate these results analytically with a simple linearized model.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon and L. F. Mollenauer, Opt. Lett. 15, 1351 (1990).
    [CrossRef] [PubMed]
  2. R. Hui, M. O’Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
    [CrossRef]
  3. P. P. Mitra, J. B. Stark, and A. G. Green, Opt. Photon. News, March 2002, p. 122.
  4. P. P. Mitra and J. B. Stark, Nature 411, 1027 (2001).
    [CrossRef] [PubMed]
  5. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, Opt. Lett. 21, 459 (1996).
    [CrossRef]
  6. X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, Opt. Lett. 27, 1616 (2002).
    [CrossRef]
  7. C. Xu and X. Liu, Opt. Lett. 27, 1619 (2002).
    [CrossRef]
  8. I. R. Gabitov and P. M. Lushnikov, Opt. Lett. 27, 113 (2002).
    [CrossRef]

2002 (3)

2001 (1)

P. P. Mitra and J. B. Stark, Nature 411, 1027 (2001).
[CrossRef] [PubMed]

1997 (1)

R. Hui, M. O’Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

1996 (1)

1990 (1)

Bélanger, P.-A.

Doran, N. J.

Gabitov, I. R.

Gordon, J. P.

Green, A. G.

P. P. Mitra, J. B. Stark, and A. G. Green, Opt. Photon. News, March 2002, p. 122.

Hui, R.

R. Hui, M. O’Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

Liu, X.

Lushnikov, P. M.

McKinstrie, C. J.

Mitra, P. P.

P. P. Mitra, J. B. Stark, and A. G. Green, Opt. Photon. News, March 2002, p. 122.

P. P. Mitra and J. B. Stark, Nature 411, 1027 (2001).
[CrossRef] [PubMed]

Mollenauer, L. F.

O'Sullivan, M.

R. Hui, M. O’Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

Paré, C.

Robinson, A.

R. Hui, M. O’Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

Slusher, R. E.

Stark, J. B.

P. P. Mitra, J. B. Stark, and A. G. Green, Opt. Photon. News, March 2002, p. 122.

P. P. Mitra and J. B. Stark, Nature 411, 1027 (2001).
[CrossRef] [PubMed]

Taylor, M.

R. Hui, M. O’Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

Villeneuve, A.

Wei, X.

Xu, C.

J. Lightwave Technol. (1)

R. Hui, M. O’Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

Nature (1)

P. P. Mitra and J. B. Stark, Nature 411, 1027 (2001).
[CrossRef] [PubMed]

Opt. Lett. (5)

Opt. Photon.News (1)

P. P. Mitra, J. B. Stark, and A. G. Green, Opt. Photon. News, March 2002, p. 122.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic fiber-optic communication channel.

Fig. 2
Fig. 2

Without compensation: α=0 km-1, LDβ0=500 km, LNLI0=150 km, L=80 km, and N=10. a, Phase variance versus dispersion. b, Phase variance versus signal power. With compensation: α=0.0488 km-1, β0=21.59×10-24 s2 km-1 (or 21.59 ps2 km-1), γ=1.2 W-1 km-1, I0=5×10-3 W, Δ=1010 Hz. c, Phase variance versus β for various dispersion maps. GOLD, Gigabit Optical Link Designer.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

iz-βt2+iα/2Ez,t+γEz,t2Ez,t=0.
-zϕ+2aγzδa-β2δaa=0, zδa-βat2ϕ=0.
aϕδaout=Mα,β,γ;L,ωaϕδain.
Mα,β,γ;L,ω=P exp-0Ldz0-βω2-2γza2βω20,
M0,β,γ;L,ω=cosδLδ/βω2sinδL-βω2/δsinδLcosδL,
Mα,β,γ;ω,L=limδz0 Pz=0,LM0,β,γz;ω,δz.
aϕδaout=i=1NMN-iωn1in2i.
2ρΔϕ2ω=1Ni=1NM11N-i2+M12N-i2,
Mω=1L/LNL01,
2ρϕ2t=1+LLNL2iN-i2N=1+13NLLNL2.
2ρϕ2t=1+ΔLD2LNL-πΔπΔdω2πω21-sin2Lδω2Lδω,

Metrics