Abstract

We analyze a holey fiber that consists of a circular distribution of air holes by the radial effective-index method. By this method, we show that the holey fiber is a leaky structure and its extended single-mode operation is governed by the differential leakage loss between the first two modes of the fiber. The effects of the hole size and the hole separation on the leakage losses of the first two modes are calculated. The leakage loss of the fundamental mode of the fiber is found to be comparable to that of a conventional holey fiber that has a hexagonal distribution of air holes.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  2. J. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  3. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).
    [CrossRef]
  4. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
    [CrossRef] [PubMed]
  5. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, J. Opt. Soc. Am. A 15, 748 (1998).
    [CrossRef]
  6. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, Opt. Lett. 25, 206 (2000).
    [CrossRef]
  7. V. Finazzi, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.
    [CrossRef]
  8. J. Xu, J. Song, C. Li, and K. Ueda, Opt. Commun. 182, 343 (2000).
    [CrossRef]
  9. A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, M. C. J. Large, J. Zagari, N. A. P. Nicorovici, R. C. McPhedran, and C. M. de Sterke, Opt. Express 9, 813 (2001), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  10. K. S. Chiang, Appl. Opt. 26, 2969 (1987).
    [CrossRef] [PubMed]
  11. V. Rastogi and K. S. Chiang, Opt. Lett. 26, 491 (2001).
    [CrossRef]
  12. K. S. Chiang and V. Rastogi, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 620–621.
    [CrossRef]
  13. K. Thyagarajan, S. Diggavi, A. Taneja, and A. K. Ghatak, Appl. Opt. 30, 3877 (1991).
    [CrossRef] [PubMed]

2001 (2)

2000 (3)

1999 (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).
[CrossRef]

1998 (2)

1997 (1)

1991 (1)

1987 (1)

Argyros, A.

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).
[CrossRef]

Bassett, I. M.

Bennett, P. J.

Birks, T. A.

Bjarklev, A.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).
[CrossRef]

Broderick, N. G. R.

Broeng, J.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

Chiang, K. S.

V. Rastogi and K. S. Chiang, Opt. Lett. 26, 491 (2001).
[CrossRef]

K. S. Chiang, Appl. Opt. 26, 2969 (1987).
[CrossRef] [PubMed]

K. S. Chiang and V. Rastogi, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 620–621.
[CrossRef]

de Sandro, J. P.

de Sterke, C. M.

Diggavi, S.

Finazzi, V.

V. Finazzi, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.
[CrossRef]

Ghatak, A. K.

Knight, J. C.

Large, M. C. J.

Li, C.

J. Xu, J. Song, C. Li, and K. Ueda, Opt. Commun. 182, 343 (2000).
[CrossRef]

McPhedran, R. C.

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).
[CrossRef]

Monro, T. M.

T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, Opt. Lett. 25, 206 (2000).
[CrossRef]

V. Finazzi, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.
[CrossRef]

Nicorovici, N. A. P.

Ranka, J.

Rastogi, V.

V. Rastogi and K. S. Chiang, Opt. Lett. 26, 491 (2001).
[CrossRef]

K. S. Chiang and V. Rastogi, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 620–621.
[CrossRef]

Richardson, D. J.

T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, Opt. Lett. 25, 206 (2000).
[CrossRef]

V. Finazzi, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.
[CrossRef]

Russell, P. St. J.

Song, J.

J. Xu, J. Song, C. Li, and K. Ueda, Opt. Commun. 182, 343 (2000).
[CrossRef]

Stentz, A. J.

Taneja, A.

Thyagarajan, K.

Ueda, K.

J. Xu, J. Song, C. Li, and K. Ueda, Opt. Commun. 182, 343 (2000).
[CrossRef]

van Eijkelenborg, M. A.

Windeler, R. S.

Xu, J.

J. Xu, J. Song, C. Li, and K. Ueda, Opt. Commun. 182, 343 (2000).
[CrossRef]

Zagari, J.

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. Xu, J. Song, C. Li, and K. Ueda, Opt. Commun. 182, 343 (2000).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5, 305 (1999).
[CrossRef]

Opt. Lett. (4)

OSA Trends in Optics and Photonics Series (2)

V. Finazzi, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 524–525.
[CrossRef]

K. S. Chiang and V. Rastogi, in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 620–621.
[CrossRef]

Science (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section of a holey fiber with a circular distribution of holes.

Fig. 2
Fig. 2

Effective-index profiles of the holey fiber with d=3 µm, r0=5 µm, n=6, and three rings of holes at wavelengths 1550, 1300, 800, and 633 nm.

Fig. 3
Fig. 3

Leakage losses of the first two modes of the holey fiber as functions of wavelength. The fiber parameters are as for Fig. 2.

Fig. 4
Fig. 4

Leakage losses of the first two modes of the holey fiber as functions of hole size d for different values of r0 (assuming three rings of holes) at (a) 1550 nm and (b) 633 nm. Solid curves, LP01; dashed curves, LP11.

Fig. 5
Fig. 5

(a) Comparable holey fibers, one with a hexagonal distribution of holes and the other with a circular distribution of holes. (b) Leakage loss of the fundamental mode calculated by the REIM for the fiber with a circular distribution of holes, together with the published results by Finazzi et al.7 for the fiber with a hexagonal distribution of holes, where p is the number of rings.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2ϕr2+1rϕr+1r22ϕθ2+k2n2r,θ-neff2ϕ=0
ϕr,θ=ϕrrϕrθr,θ.
2ϕrθri,θθ2+k2n2ri,θ-neffr2riri2ϕrθri,θ=0,r=ri,
ϕrθθθ=0=ϕrθθθ=2π.
d2ϕrdr2+1rdϕrdr+k2n˜effr2r-l2k2r2-neff2ϕr=0,
n˜effr2r=neffr2r+l2k2r2,  l=0,1,2,.

Metrics