Abstract

We propose an ultracompact high-efficiency polarizing beam splitter that operates over a wide wavelength range and is based on a hybrid photonic crystal and a conventional waveguide structure. Within a small area (15 µm×10 µm), this polarizing beam splitter separates TM- and TE-polarized modes into orthogonal output waveguides. Results of simulations with the two-dimensional finite-difference time-domain method show that 99.3% of TM-polarized light is deflected by the photonic crystal structure (with a 28.0-dB extinction ratio), whereas 99.0% of TE-polarized light propagates through the structure (with a 32.2-dB extinction ratio). Wave vector diagrams are employed to explain the operation of a polarizing beam splitter. Tolerance analysis reveals a large tolerance to fabrication errors.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Nordin, S. Kim, J. Cai, and J. Jiang, Opt. Express 10, 1334 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  2. R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
    [CrossRef]
  3. P. Wei and W. Wang, IEEE Photon. Technol. Lett. 6, 245 (1994).
    [CrossRef]
  4. L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
    [CrossRef]
  5. H. Maruyama, M. Haruna, and H. Nishihara, J. Lightwave Technol. 13, 1550 (1995).
    [CrossRef]
  6. S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
    [CrossRef]
  7. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).
  8. J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  9. M. Notomi, Phys. Rev. B 62, 10, 696 (2000).
    [CrossRef]
  10. T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
    [CrossRef]

2002 (2)

2000 (1)

M. Notomi, Phys. Rev. B 62, 10, 696 (2000).
[CrossRef]

1999 (1)

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
[CrossRef]

1995 (1)

H. Maruyama, M. Haruna, and H. Nishihara, J. Lightwave Technol. 13, 1550 (1995).
[CrossRef]

1994 (3)

P. Wei and W. Wang, IEEE Photon. Technol. Lett. 6, 245 (1994).
[CrossRef]

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
[CrossRef]

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

1993 (1)

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Baba, T.

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Berenger, J. P.

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Cai, J.

Chen, A.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
[CrossRef]

Chuyanov, V.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
[CrossRef]

Dalton, L. R.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
[CrossRef]

de Ridder, R. M.

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

de Vreede, A. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
[CrossRef]

Driessen, A.

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Fluitman, J. H. J.

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Garner, S. M.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
[CrossRef]

Groen, F. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
[CrossRef]

Haruna, M.

H. Maruyama, M. Haruna, and H. Nishihara, J. Lightwave Technol. 13, 1550 (1995).
[CrossRef]

Jiang, J.

Kim, S.

Lee, S.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
[CrossRef]

Maruyama, H.

H. Maruyama, M. Haruna, and H. Nishihara, J. Lightwave Technol. 13, 1550 (1995).
[CrossRef]

Metaal, E. G.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
[CrossRef]

Nakamura, M.

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Nishihara, H.

H. Maruyama, M. Haruna, and H. Nishihara, J. Lightwave Technol. 13, 1550 (1995).
[CrossRef]

Nordin, G. P.

Notomi, M.

M. Notomi, Phys. Rev. B 62, 10, 696 (2000).
[CrossRef]

Sander, A. F. M.

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Smit, M. K.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
[CrossRef]

Soldano, L. B.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
[CrossRef]

Steier, W. H.

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).

Verbeek, B. H.

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
[CrossRef]

Wang, W.

P. Wei and W. Wang, IEEE Photon. Technol. Lett. 6, 245 (1994).
[CrossRef]

Wei, P.

P. Wei and W. Wang, IEEE Photon. Technol. Lett. 6, 245 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Wei and W. Wang, IEEE Photon. Technol. Lett. 6, 245 (1994).
[CrossRef]

S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, IEEE Photon. Technol. Lett. 11, 842 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, IEEE Photon. Technol. Lett. 6, 402 (1994).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Lightwave Technol. (1)

H. Maruyama, M. Haruna, and H. Nishihara, J. Lightwave Technol. 13, 1550 (1995).
[CrossRef]

J. Lightwave Technol. (1)

R. M. de Ridder, A. F. M. Sander, A. Driessen, and J. H. J. Fluitman, J. Lightwave Technol. 11, 1806 (1993).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

M. Notomi, Phys. Rev. B 62, 10, 696 (2000).
[CrossRef]

Other (1)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Geometry of a polarizing beam splitter composed of a square array of Si posts embedded in waveguides. The waveguide mode source line and detector lines for efficiency calculations are indicated. Square inset, first Brillouin zone of the PhC. (b) Efficiencies as a function of wavelength for TE- and TM-polarized incident light calculated at the detectors on the vertical and horizontal output waveguides as indicated in (a).

Fig. 2
Fig. 2

Magnitudes squared of time-averaged (a) electric field (TM) and (b) magnetic field (TE) at λ=1.55 µm calculated by the two-dimensional FDTD method. The Yee cell size in the FDTD simulation is 10 nm.

Fig. 3
Fig. 3

Wave-vector diagrams for a polarizing beam splitter at λ=1.55 µm. Diamond insets, first Brillouin zone with respect to the wave-vector diagram: (a) TM (after Ref. 1), (b) TE.

Metrics